11、∵a≥0,b≥0,∴2a+b≥0.
又f(4)=1,f(2a+b)≤1,
∴f(2a+b)≤f(4),
∴0≤2a+b≤4.
由畫出圖象如圖所示,圖中陰影部分的面積為S=24=4,故選B.
5.若函數(shù)f(x)=-x3+x2+2ax在上存在單調(diào)遞增區(qū)間,則a的取值范圍是________.
答案:
解析:對f(x)求導(dǎo),得
f′(x)=-x2+x+2a=-2++2a.
當(dāng)x∈時,f′(x)的最大值為f′=+2a.
令+2a>0,解得a>-.
所以a的取值范圍是.
6.函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x
12、)在區(qū)間(1,2)上是增函數(shù),求a的取值范圍.
解:(1)f′(x)=3ax2+6x+3,f′(x)=3ax2+6x+3=0的判別式Δ=36(1-a).
①若a≥1,則f′(x)≥0,且f′(x)=0,當(dāng)且僅當(dāng)a=1,x=-1,故此時f(x)在R上是增函數(shù).
②由于a≠0,故當(dāng)a<1時,f′(x)=0有兩個根,x1=,x2=.
若00,故f(x)分別在(-∞,x2),(x1,+∞)上是增函數(shù);當(dāng)x∈(x2,x1)時,f′(x)<0,故f(x)在(x2,x1)上是減函數(shù).
若a<0,則當(dāng)x∈(-∞,x1)或(x2,+∞
13、)時,f′(x)<0,故f(x)分別在(-∞,x1),(x2,+∞)上是減函數(shù);當(dāng)x∈(x1,x2)時,f′(x)>0,故f(x)在(x1,x2)上是增函數(shù).
(2)當(dāng)a>0,x>0時,f′(x)>0,
所以當(dāng)a>0時,f(x)在區(qū)間(1,2)上是增函數(shù).
當(dāng)a<0時,f(x)在區(qū)間(1,2)上是增函數(shù),當(dāng)且僅當(dāng)f′(1)≥0且f′(2)≥0,解得-≤a<0.
綜上,a的取值范圍是∪(0,+∞).
6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375