2019高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 立體幾何 第2講 空間幾何體中的計(jì)算問(wèn)題練習(xí) 文.doc
《2019高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 立體幾何 第2講 空間幾何體中的計(jì)算問(wèn)題練習(xí) 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 立體幾何 第2講 空間幾何體中的計(jì)算問(wèn)題練習(xí) 文.doc(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2講 空間幾何體中的計(jì)算問(wèn)題 A組 小題提速練 一、選擇題 1.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是( ) A.17π B.18π C.20π D.28π 解析:由三視圖知該幾何體為球去掉了所剩的幾何體(如圖),設(shè)球的半徑為R,則πR3=,故R=2,從而它的表面積S=4πR2+πR2=17π.故選A. 答案:A 2.將一個(gè)長(zhǎng)方體沿相鄰三個(gè)面的對(duì)角線截去一個(gè)棱錐,得到的幾何體的正視圖與俯視圖如圖所示,則該幾何體的側(cè)(左)視圖為( ) 解析:由幾何體的正視圖、俯視圖以及題意可畫出幾何體的直觀圖,如圖所示. 該幾何體的側(cè)視圖為選項(xiàng)B.故選B. 答案:B 3.某幾何體三視圖如圖所示,則該幾何體的體積為( ) A.8- B.8- C.8-π D.8-2π 解析:由三視圖可知,該幾何體的體積是一個(gè)四棱柱的體積減去半個(gè)圓柱的體積,即V=222-π122=8-π.故選C. 答案:C 4.已知直三棱柱ABCA1B1C1的6個(gè)頂點(diǎn)都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為( ) A. B.2 C. D.3 解析:由題意知,該三棱柱可以看作是長(zhǎng)方體的一部分,且長(zhǎng)方體同一頂點(diǎn)處的三條棱長(zhǎng)分別為3、4、12,又∵三棱柱的外接球即為長(zhǎng)方體的外接球,(2R)2=32+42+122,∴R=.故選C. 答案:C 5.(2018貴陽(yáng)模擬)三棱錐PABC的四個(gè)頂點(diǎn)都在體積為的球的表面上,底面ABC所在的小圓面積為16π,則該三棱錐的高的最大值為( ) A.4 B.6 C.8 D.10 解析:依題意,設(shè)題中球的球心為O、半徑為R,△ABC的外接圓半徑為r,則=,解得R=5, 由πr2=16π,解得r=4,又球心O到平面ABC的距離為=3,因此三棱錐PABC的高的最大值為5+3=8,選C. 答案:C 6.(2017高考全國(guó)卷Ⅲ)已知圓柱的高為1,它的兩個(gè)底面的圓周在直徑為2的同一個(gè)球的球面上,則該圓柱的體積為( ) A.π B. C. D. 解析:設(shè)圓柱的底面半徑為r,則r2=12-2=,所以,圓柱的體積V=π1=,故選B. 答案:B 7.在封閉的直三棱柱ABCA1B1C1內(nèi)有一個(gè)體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是( ) A.4π B. C.6π D. 解析:設(shè)球的半徑為R,∵△ABC的內(nèi)切圓半徑為=2,∴R≤2.又2R≤3,∴R≤,∴Vmax=π3=.故選B. 答案:B 8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為( ) A.18+36 B.54+18 C.90 D.81 答案:B 9.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為 ( ) A.20π B.24π C.28π D.32π 解析:由三視圖知該幾何體是圓錐與圓柱的組合體,設(shè)圓柱底面圓半徑為r,周長(zhǎng)為c,圓錐母線長(zhǎng)為l,圓柱高為h.由圖得r=2,c=2πr=4π,h=4,由勾股定理得:l==4,S表=πr2+ch+cl=4π+16π+8π=28π. 答案:C 10.(2018西安質(zhì)量檢測(cè))某幾何體的三視圖如圖所示,則該幾何體的體積為( ) A. B. C. D.3 解析:根據(jù)幾何體的三視圖,得該幾何體是下部為直三棱柱,上部為三棱錐的組合體,如圖所示,則該幾何體的體積是V幾何體=V三棱柱+V三棱錐=211+211=.故選A. 答案:A 11.(2018唐山統(tǒng)考)三棱錐PABC中,PA⊥平面ABC且PA=2,△ABC是邊長(zhǎng)為的等邊三角形,則該三棱錐外接球的表面積為( ) A. B.4π C.8π D.20π 解析:由題意得,此三棱錐外接球即以△ABC為底面、以PA為高的正三棱柱的外接球,因?yàn)椤鰽BC的外接圓半徑r==1,外接球球心到△ABC的外接圓圓心的距離d=1,所以外接球的半徑R==,所以三棱錐外接球的表面積S=4πR2=8π,故選C. 答案:C 12.如圖,直三棱柱ABC A1B1C1的六個(gè)頂點(diǎn)都在半徑為1的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為( ) A.2 B.1 C. D. 解析:由題意知,球心在側(cè)面BCC1B1的中心O上,BC為截面圓的直徑,∴∠BAC=90,△ABC的外接圓圓心N位于BC的中點(diǎn),同理△A1B1C1的外心M是B1C1的中點(diǎn).設(shè)正方形BCC1B1邊長(zhǎng)為x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R為球的半徑), ∴2+2=1, 即x=,則AB=AC=1, ∴S矩形ABB1A1=1=.故選C. 答案:C 二、填空題 13.已知某幾何體的三視圖如圖所示,則該幾何體的體積為________. 解析:由題意知,該幾何體的三視圖是一個(gè)三棱柱,其體積V=234=12. 答案:12 14.(2018洛陽(yáng)統(tǒng)考)已知點(diǎn)A,B,C,D均在球O上,AB=BC=,AC=2.若三棱錐DABC體積的最大值為3,則球O的表面積為________. 解析:由題意可得,∠ABC=,△ABC的外接圓半徑r=,當(dāng)三棱錐的體積最大時(shí),VDABC=S△ABCh(h為D到底面ABC的距離),即3=h?h=3,即R+=3(R為外接球半徑),解得R=2,∴球O的表面積為4π22=16π. 答案:16π 15.正四面體ABCD的外接球半徑為2,過(guò)棱AB作該球的截面,則截面面積的最小值為________. 解析:由題意,面積最小的截面是以AB為直徑的圓,在正四面體ABCD中,如圖,設(shè)E為△BCD的中心,連接AE,BE,則球心O在AE上,延長(zhǎng)AE交球面于F,則AF是球的直徑,∠ABF=90,又AE⊥BE,所以在△ABF中,由射影定理得AB2=AEAF=4AE,又AE==AB,所以AB=,故截面面積的最小值為π2=. 答案: 16.(2018貴州適應(yīng)性考試)已知正三棱柱(底面是正三角形,側(cè)棱與底面垂直)的體積為3 cm3,其所有頂點(diǎn)都在球O的球面上,則球O的表面積的最小值為________cm2. 解析:球O的表面積最小?球O的半徑R最?。O(shè)正三棱柱的底面邊長(zhǎng)為a,高為b,則正三棱柱的體積V=a2b=3, 所以a2b=12.底面正三角形所在截面圓的半徑r=a,則R2=r2+2=+=+=+,令f(b)=+,0<b<2R,則f′(b)=,令f′(b)=0,解得b=2 ,當(dāng)0<b<2時(shí),f′(b)<0,函數(shù)f(b)單調(diào)遞減,當(dāng)b>2時(shí),f′(b)>0,函數(shù)f(b)單調(diào)遞增,所以當(dāng)b=2時(shí),f(b)取得最小值3, 即(R2)min=3,故球O的表面積的最小值為12π. 答案:12π B組 大題規(guī)范練 1.如圖,在正方體ABCDA1B1C1D1中,AA1=2,E為棱CC1的中點(diǎn). (1)求證:B1D1⊥AE; (2)求證:AC∥平面B1DE. 證明:(1)連接BD, 則BD∥B1D1. ∵四邊形ABCD是正方形, ∴AC⊥BD. ∵CE⊥平面ABCD, ∴CE⊥BD. 又AC∩CE=C, ∴BD⊥平面ACE. ∵AE?平面ACE,∴BD⊥AE,∴B1D1⊥AE. (2)取BB1的中點(diǎn)F,連接AF,CF,EF, 則FC∥B1E, ∴CF∥平面B1DE. ∵E,F(xiàn)是CC1,BB1的中點(diǎn),∴EF綊BC. 又BC綊AD,∴EF綊AD, ∴四邊形ADEF是平行四邊形,∴AF∥ED. ∵AF?平面B1DE,ED?平面B1DE, ∴AF∥平面B1DE. ∵AF∩CF=F,∴平面ACF∥平面B1DE. 又∵AC?平面ACF,∴AC∥平面B1DE. 2.如圖,在三棱錐VABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點(diǎn). (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐VABC的體積. 解析:(1)證明:因?yàn)镺,M分別為AB,VA的中點(diǎn), 所以O(shè)M∥VB. 又因?yàn)閂B?平面MOC,所以VB∥平面MOC. (2)證明:因?yàn)锳C=BC,O為AB的中點(diǎn), 所以O(shè)C⊥AB. 又因?yàn)槠矫鎂AB⊥平面ABC,且OC?平面ABC, 所以O(shè)C⊥平面VAB. 所以平面MOC⊥平面VAB. (3)在等腰直角三角形ACB中,AC=BC=, 所以AB=2,OC=1. 所以等邊三角形VAB的面積S△VAB=. 又因?yàn)镺C⊥平面VAB, 所以三棱錐CVAB的體積等于OCS△VAB=. 又因?yàn)槿忮FVABC的體積與三棱錐CVAB的體積相等,所以三棱錐VABC的體積為. 3.如圖,在四棱錐PABCD中,底面ABCD是菱形,∠DAB=60,PD⊥平面ABCD,PD=AD=1,點(diǎn)E,F(xiàn)分別為AB和PD的中點(diǎn). (1)求證:直線AF∥平面PEC; (2)求三棱錐PBEF的表面積. 解析:(1)證明:作FM∥CD交PC于M,連接ME. ∵點(diǎn)F為PD的中點(diǎn),∴FM綊CD, 又AE綊CD,∴AE綊FM, ∴四邊形AEMF為平行四邊形,∴AF∥EM, ∵AF?平面PEC,EM?平面PEC, ∴直線AF∥平面PEC. (2)連接ED,BD,可知ED⊥AB, ???AB⊥PE,AB⊥FE, 故S△PEF=PFED==; S△PBF=PFBD=1=; S△PBE=PEBE==; S△BEF=EFEB=1=. 因此三棱錐PBEF的表面積SPBEF=S△PEF+S△PBF+S△PBE+S△BEF=. 4.如圖,在單位正方體ABCDA1B1C1D1中,E,F(xiàn)分別是AD,BC1的中點(diǎn). (1)求證:EF∥平面C1CDD1; (2)在線段A1B上是否存在點(diǎn)G,使EG⊥平面A1BC1?若存在,求點(diǎn)G到平面C1DF的距離;若不存在,請(qǐng)說(shuō)明理由. 解析:(1)證明:取BC的中點(diǎn)M,連接EM,F(xiàn)M, ∵E,F(xiàn)分別是AD,BC1的中點(diǎn),∴EM∥DC,F(xiàn)M∥C1C, EM?平面EFM,F(xiàn)M?平面EFM,EM∩FM=M, DC?平面C1CDD1,C1C?平面C1CDD1,DC∩C1C=C, ∴平面EFM∥平面C1CDD1,而EF?平面EFM, ∴EF∥平面C1CDD1. (2)取A1B的中點(diǎn)G,連接EG,EA1,EB,易知EA1=EB,而G為中點(diǎn),∴EG⊥A1B. 連接FG,則FG∥A1C1, ∵正方體棱長(zhǎng)為1, 在△A1BC1中,F(xiàn)G=A1C1=. 在Rt△FME中,EF=,在Rt△EAG中,EG=, ∴FG2+EG2=FE2,即EG⊥FG,故EG⊥A1C1, 又A1B,A1C1?平面A1BC1,A1B∩A1C1=A1, ∴EG⊥平面A1BC1. 點(diǎn)G到平面C1DF的距離就是點(diǎn)G到平面C1DB的距離. ∵GA∥C1D,∴GA∥平面C1DB, ∴點(diǎn)G到平面C1DB的距離就是點(diǎn)A到平面C1DB的距離.易知S△BDC1=,S△ABD=, 點(diǎn)C1到平面ABD的距離為1, 設(shè)點(diǎn)G到平面C1DF的距離為d, 由VC1ABD=VABDC1得1S△ABD=dS△BDC1, 即=d,∴d=, 即點(diǎn)G到平面C1DF的距離為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 保分專題三 立體幾何 第2講 空間幾何體中的計(jì)算問(wèn)題練習(xí) 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 專題 空間 幾何體 中的 計(jì)算 問(wèn)題 練習(xí)
鏈接地址:http://www.820124.com/p-3889056.html