畢業(yè)設計(論文)轎車齒輪齒條轉(zhuǎn)向器的設計01654
《畢業(yè)設計(論文)轎車齒輪齒條轉(zhuǎn)向器的設計01654》由會員分享,可在線閱讀,更多相關(guān)《畢業(yè)設計(論文)轎車齒輪齒條轉(zhuǎn)向器的設計01654(52頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、安徽工程大學畢業(yè)設計(論文)- 1 -齒輪齒條轉(zhuǎn)向器設計齒輪齒條轉(zhuǎn)向器設計摘摘 要要此次設計針對一款用于轎車的齒輪齒條轉(zhuǎn)向器。論文詳細講述了該轉(zhuǎn)向系統(tǒng)的基本構(gòu)成、作用、技術(shù)要求以及整體的性能。與此同時,對該齒輪齒條轉(zhuǎn)向器,進行了細致的布局,并對其空間結(jié)構(gòu)進行詳細的分析,確定轉(zhuǎn)向器的結(jié)構(gòu)和布置形式,精確分析其嚙合傳動的特點和傳動效率。再根據(jù)該款轎車的各項數(shù)據(jù),進行設計計算,確定轉(zhuǎn)向器的傳動比和其它幾何參數(shù)。由此,接下來利用三維建模軟件 PROE 畫出轉(zhuǎn)向器的各部分零件,并由此得出各部分零件圖。進而組裝,得出其裝配圖。再在此基礎(chǔ)上,轉(zhuǎn)換格式,導入到 ADMAS 軟件中進行運動仿真分析。時代在前進,
2、科技也不斷向前發(fā)展,新技術(shù),新材料層出不窮。齒輪齒條轉(zhuǎn)向器,在不斷的技術(shù)積累中,也得到了不斷的創(chuàng)新提高,不斷的向著輕便化,智能化的方向發(fā)展。關(guān)鍵詞關(guān)鍵詞:轎車;轉(zhuǎn)向系統(tǒng);齒輪齒條;轉(zhuǎn)向器;傳動比安徽工程大學畢業(yè)設計(論文)- 2 -Gear rack steering gear designAbstractThe design of pinion and rack steering gear is for cars. Papers detail the basic structure of the steering system, function, technical requirement
3、s and overall performance. At the same time, the steering rack and pinion, for a detailed layout and its spatial structure detailed analysis to determine the structure and arrangement of the steering, accurate analysis of the characteristics of the gear transmission and transmission efficiency. Acco
4、rding to the data of cars which carry out design calculations determine the steering gear ratio and other geometric parameters. Thus, the use of 3 d modeling software PROE draw the steering parts, each part and draw the parts drawing. Further assembly; come to its assembly drawing. On this basis, th
5、en, the conversion format, imported into ADMAS software for motion simulation. Age in progress, is also continuous development of science and technology, new technology, new material emerge in endlessly. Pinion and rack steering gear, in constant accumulation, has been constantly innovation, constan
6、tly toward portable, intelligent direction.Keywords: saloon car; steering system; pinion and rack; steering gear; transmission ratio安徽工程大學畢業(yè)設計(論文)- 3 -目目 錄錄引言引言.6第一章第一章 緒論緒論.71.1 轉(zhuǎn)向系統(tǒng)的設計要求.71.2 轉(zhuǎn)向器的功用及分類.81.2.1 轉(zhuǎn)向器的功用.81.2.2 轉(zhuǎn)向器的分類.91.2.3 齒輪齒條轉(zhuǎn)向器的優(yōu)缺點.101.3 汽車轉(zhuǎn)向器國內(nèi)外現(xiàn)狀及發(fā)展趨勢.101.3.1 國內(nèi)外現(xiàn)狀.101.3.2 轉(zhuǎn)向系的發(fā)
7、展發(fā)展趨勢.111.4 設計的主要內(nèi)容.12第二章第二章 轉(zhuǎn)向器的設計計算轉(zhuǎn)向器的設計計算.132.1 轉(zhuǎn)向系主要參數(shù)的確定.132.1.1 轉(zhuǎn)向系傳動比的確定.132.1.2 動力缸的設計計算.152.2 齒輪齒條轉(zhuǎn)向器設計計算.172.2.1 主要設計參數(shù)的選擇.172.2.2 齒輪齒條參數(shù)的計算.172.2.3 按齒根彎曲疲勞強度計算校核.182.2.4 按齒面接觸疲勞強度校核.18第三章第三章 轉(zhuǎn)向器三維模型的建立轉(zhuǎn)向器三維模型的建立.193.1 轉(zhuǎn)向器方向盤的建立過程.193.2 齒輪齒條模型建立的過程.223.2.1 小齒輪的建立過程.223.2.2 齒條的創(chuàng)建.243.2.3 動
8、力缸的建立.273.3 轉(zhuǎn)向器的裝配過程.28第四章第四章 轉(zhuǎn)向器的運動仿真分析轉(zhuǎn)向器的運動仿真分析.304.1 MSC.ADAMS 軟件介紹 .304.2 三維模型的導入過程和定義約束.314.2.1 模型的導入.314.2.2 定義約束.324.3 仿真實驗與結(jié)果分析.33結(jié)論與展望結(jié)論與展望.36致謝致謝.37參考文獻參考文獻.38附錄附錄 A 外文文獻及其譯文外文文獻及其譯文.39附錄附錄 B 參考文獻及摘要參考文獻及摘要.51插圖清單安徽工程大學畢業(yè)設計(論文)- 4 -圖 1-1 轉(zhuǎn)向系.6圖 3-1 掃描對話框.18圖 3-2 軌跡.18圖 3-3 截面.22圖 3-4 方向盤圓
9、盤.22圖 3-5 方向盤圓盤內(nèi)部線條規(guī)劃.23圖 3-6 內(nèi)部設計線條.23圖 3-7 方向盤效果圖.24圖 3-8 關(guān)系對話框.25圖 3-9 小齒輪效果圖.27圖 3-10 齒條效果圖.28圖 3-11 動力缸效果圖.29圖 3-12 部分零件圖.29圖 3-13 整體效果圖.30圖 4-1 文件導入對話框.35圖 4-2 整體效果圖.35圖 4-3 方向盤轉(zhuǎn)動角.38圖 4-4 轉(zhuǎn)向節(jié)轉(zhuǎn)向角.38圖 4-5 齒條位移圖(一).38圖 4-6 齒條位移圖(二).39表格清單表 1 齒輪主要設計參數(shù)17安徽工程大學畢業(yè)設計(論文)- 5 -引引 言言汽車產(chǎn)業(yè)是國民經(jīng)濟中支柱性的高科技產(chǎn)業(yè),
10、改革開放 30 年以來,中國汽車工業(yè)不斷壯大,形成了中國特色的多樣化、多層次的消費市場。然而人們對汽車的性能需求也越來越高。汽車已經(jīng)不是單純機械意義上的汽車了,它是機械、電子、材料等學科的綜合產(chǎn)物。隨著科學技術(shù)的發(fā)展,市場對汽車性能的要求也越來越高,特別是汽車的操縱穩(wěn)定性,成為當代汽車研究的一個重要方面轉(zhuǎn)向系的好壞直接影響到汽車的操縱穩(wěn)定性、轉(zhuǎn)向輕便性以及駕駛員的工作強度和工作效率,因此轉(zhuǎn)向系統(tǒng)的設計是汽車設計中很重要的一個部分。 汽車在行駛過程中,經(jīng)常需要換車道和轉(zhuǎn)彎。駕駛員通過一套專門的機構(gòu)汽車轉(zhuǎn)向系,使汽車改變行駛方向。轉(zhuǎn)向系還可以修正因路面傾斜等原因引起的汽車跑偏。轉(zhuǎn)向系統(tǒng)不僅關(guān)系到汽
11、車行駛的安全,還關(guān)系到延長輪胎壽命、降低燃油油耗等。伴隨著現(xiàn)代汽車工業(yè)的發(fā)展而不斷進步,高速公路和高架公路的出現(xiàn),同向并行車輛的增多和行駛速度的提高及道路條件的變化,要求更加精確靈活的轉(zhuǎn)向系統(tǒng)。安徽工程大學畢業(yè)設計(論文)- 6 -第一章第一章 緒論緒論1.1 轉(zhuǎn)向系統(tǒng)的設計要求轉(zhuǎn)向系是用來保持或者改變汽車行使方向的機構(gòu),包括轉(zhuǎn)向操縱機構(gòu)(轉(zhuǎn)向盤、轉(zhuǎn)向上、下軸、 ) 、轉(zhuǎn)向器、轉(zhuǎn)向傳動機構(gòu)(轉(zhuǎn)向拉桿、轉(zhuǎn)向節(jié))等。轉(zhuǎn)向系統(tǒng)應準確,快速、平穩(wěn)地響應駕駛員的轉(zhuǎn)向指令,轉(zhuǎn)向行使后或受到外界擾動時,在駕駛員松開方向盤的狀態(tài)下,應保證汽車自動返回穩(wěn)定的直線行使狀態(tài)。圖 1-1 轉(zhuǎn)向系1-方向盤; 2-轉(zhuǎn)向
12、上軸 ;3-托架; 4-萬向節(jié); 5-轉(zhuǎn)向下軸; 6-防塵罩 ;7-轉(zhuǎn)向器 ;8-轉(zhuǎn)向拉桿一般來說,對轉(zhuǎn)向系統(tǒng)的要求如下:轉(zhuǎn)向系傳動比包括轉(zhuǎn)向系的角傳動比(方向盤轉(zhuǎn)角與轉(zhuǎn)向輪轉(zhuǎn)角之比)和轉(zhuǎn)向系的力傳動比。在轉(zhuǎn)向盤尺寸和轉(zhuǎn)向輪阻力一定時,角傳動比增加,則轉(zhuǎn)向輕便,轉(zhuǎn)向靈敏度降低;角傳動比減小,則轉(zhuǎn)向沉重,轉(zhuǎn)向靈敏度提高。轉(zhuǎn)向角傳動比不宜低于15-16;也不宜過大,通常以轉(zhuǎn)向盤轉(zhuǎn)動圈數(shù)和轉(zhuǎn)向輕便性來確定。一般來說,轎車轉(zhuǎn)向盤轉(zhuǎn)動圈數(shù)不宜大于 4 圈,對轎車來說,有動力轉(zhuǎn)向時的轉(zhuǎn)向力約為 2050;無動力轉(zhuǎn)向時為 50100N。轉(zhuǎn)向輪應具有自動回正能力。轉(zhuǎn)向輪的回正力來源于輪胎的側(cè)偏特性和車輪的定位
13、參數(shù)。汽車的穩(wěn)定行使,必須保證有合適的前輪定位參數(shù),并注意控制轉(zhuǎn)向系統(tǒng)的內(nèi)部摩擦阻力的大小和阻尼值。轉(zhuǎn)向桿系和懸架導向機構(gòu)共同作用時,必須盡量減小其運動干涉。應從設計上保安徽工程大學畢業(yè)設計(論文)- 7 -證各桿系的運動干涉足夠小。轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)的球頭處,應有消除因磨損而產(chǎn)生的間隙的調(diào)整機構(gòu)以及提高轉(zhuǎn)向系的可靠性。轉(zhuǎn)向軸和轉(zhuǎn)向盤應有使駕駛員在車禍中避免或減輕傷害的防傷機構(gòu)。汽車在作轉(zhuǎn)向運動時,車輪應繞同一瞬心旋轉(zhuǎn),不得有側(cè)滑;同時,轉(zhuǎn)向盤和轉(zhuǎn)向輪轉(zhuǎn)動方向一致。當轉(zhuǎn)向輪受到地面沖擊時,轉(zhuǎn)向系統(tǒng)傳遞到方向盤上的反沖力要盡可能小。在任何行使狀態(tài)下,轉(zhuǎn)向輪不應產(chǎn)生擺振。機動性是通過汽車的最小轉(zhuǎn)
14、彎半徑來體現(xiàn)的,而最小轉(zhuǎn)彎半徑由內(nèi)轉(zhuǎn)向車輪的極限轉(zhuǎn)角、汽車的軸距、主銷偏移距決定的,一般的極限轉(zhuǎn)角越大,軸距和主銷偏移距越小,則最小轉(zhuǎn)彎半徑越小。轉(zhuǎn)向靈敏性主要通過轉(zhuǎn)向盤的轉(zhuǎn)動圈數(shù)來體現(xiàn),主要由轉(zhuǎn)向系的傳動比來決定。操縱的輕便性也由轉(zhuǎn)向系的傳動比決定,但其與轉(zhuǎn)向靈敏性是一對矛盾,轉(zhuǎn)向系的傳動比越大,則靈敏性提高,輕便性下降。為了兼顧兩者,一般采用變傳動比的轉(zhuǎn)向器,或者采用動力轉(zhuǎn)向,還有就是提高轉(zhuǎn)向系的正效率,但過高正效率往往伴隨著較高的逆效率。轉(zhuǎn)向時內(nèi)外車輪間的轉(zhuǎn)角協(xié)調(diào)關(guān)系是通過合理設計轉(zhuǎn)向梯形來保證的。對于采用齒輪齒條轉(zhuǎn)向器的轉(zhuǎn)向系來說,轉(zhuǎn)向盤與轉(zhuǎn)向輪轉(zhuǎn)角間的協(xié)調(diào)關(guān)系是通過合理選擇小齒輪與齒
15、條的參數(shù)、合理布置小齒輪與齒條的相對位置來實現(xiàn)的,而且前置轉(zhuǎn)向梯形和后置轉(zhuǎn)向梯形恰恰相反。轉(zhuǎn)向輪的回正能力是由轉(zhuǎn)向輪的定位參數(shù)(主銷內(nèi)傾角和主銷后傾角)決定的,同時也受轉(zhuǎn)向系逆效率的影響。選取合適的轉(zhuǎn)向輪定位參數(shù)可以獲得相應的回正力矩,但是回正力矩不能太大又不能太小,太大則會增加轉(zhuǎn)向沉重感,太小則會使回正能力減弱,不能保持穩(wěn)定的直線行駛狀態(tài)。轉(zhuǎn)向系逆效率的提高會使回正能力提高,但是會造成“打手”現(xiàn)象。轉(zhuǎn)向系的間隙主要是通過各球頭皮碗和轉(zhuǎn)向器的調(diào)隙機構(gòu)來調(diào)整的。合理的選擇轉(zhuǎn)向梯形的斷開點可以減小轉(zhuǎn)向傳動機構(gòu)與懸架導向機構(gòu)的運動干涉。1.2 轉(zhuǎn)向器的功用及分類1.2.1 轉(zhuǎn)向器的功用轉(zhuǎn)向系是用來保
16、持或者改變汽車行駛方向的機構(gòu),在汽車轉(zhuǎn)向行駛時,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。汽車轉(zhuǎn)向系統(tǒng)就是按照駕駛員的意愿控制汽車的行駛方向。轉(zhuǎn)向器作為轉(zhuǎn)向系的重要組成部分,其作用如下:1、增大來自轉(zhuǎn)向盤的轉(zhuǎn)矩,使之達到足以克服轉(zhuǎn)向輪與路面之間的轉(zhuǎn)向阻力矩 ;2、將與轉(zhuǎn)向傳動軸連接在一起的主動齒輪的轉(zhuǎn)動,轉(zhuǎn)換成齒條的直線運動而獲得所需要的位移 ;3、通過選取不同的螺(蝸)桿上的螺紋螺旋方向,達到使轉(zhuǎn)向盤的轉(zhuǎn)向方向與轉(zhuǎn)向輪轉(zhuǎn)動方向協(xié)調(diào)一致的目的。4、增大由轉(zhuǎn)向盤傳到轉(zhuǎn)向節(jié)的力并改變力的傳遞方向,獲得所要求的擺動速度和角度。對轉(zhuǎn)向系提出的要求有:安徽工程大學畢業(yè)設計(論文)- 8 -1) 汽車轉(zhuǎn)彎行駛時,
17、理想情況下全部車輪應繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),車輪不應有側(cè)滑。否則會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性;2) 汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛位置,并穩(wěn)定行駛;3) 汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動;4) 轉(zhuǎn)向傳動機構(gòu)和懸架導向裝置共同工作時,由于運動不協(xié)調(diào)使車輪產(chǎn)生的擺動應最小;5) 保證汽車有較高的機動性,具有迅速和小轉(zhuǎn)彎行駛能力;6) 操縱輕便;7) 轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能??;10)進行運動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致。1.2.2 轉(zhuǎn)向器的分類汽車轉(zhuǎn)向系統(tǒng)分為兩大類: 機械轉(zhuǎn)向系統(tǒng)和 動力轉(zhuǎn)向
18、系統(tǒng)。完全靠駕駛員手力操縱的轉(zhuǎn)向系統(tǒng)稱為 機械轉(zhuǎn)向系統(tǒng) ;借助動力來操縱的轉(zhuǎn)向系統(tǒng)稱為 動力轉(zhuǎn)向系統(tǒng)。動力轉(zhuǎn)向系統(tǒng)又可分為液壓動力轉(zhuǎn)向系統(tǒng)和電動助力動力轉(zhuǎn)向系統(tǒng)。對于轉(zhuǎn)向器按結(jié)構(gòu)形式可分為多種類型。歷史上曾出現(xiàn)過許多種形式的轉(zhuǎn)向器,目前較常用的有齒輪齒條式、蝸桿曲柄指銷式、循環(huán)球式轉(zhuǎn)向器等。齒輪齒條式轉(zhuǎn)向器 :(1)結(jié)構(gòu) 主要由轉(zhuǎn)向齒輪、轉(zhuǎn)向齒條、轉(zhuǎn)向器殼、調(diào)整螺釘?shù)冉M成。(2)工作過程 駕駛員通過轉(zhuǎn)向操縱機構(gòu),轉(zhuǎn)向齒輪轉(zhuǎn)動,從而使轉(zhuǎn)向齒條移動,轉(zhuǎn)向齒條通過轉(zhuǎn)向直拉桿,轉(zhuǎn)向擺桿和左右轉(zhuǎn)向橫拉桿,使兩車輪繞主銷偏轉(zhuǎn)。蝸桿曲柄指銷式:(1)結(jié)構(gòu)主要由搖臂軸、指銷、蝸桿等組成。(2)工作過程 它是以
19、蝸桿為主動件,曲柄銷為從動件的轉(zhuǎn)向器。蝸桿具有梯形螺紋,手指狀的錐形指銷用軸承支承在曲柄上,曲柄與轉(zhuǎn)向搖臂軸制成一體。轉(zhuǎn)向時,通過轉(zhuǎn)向盤轉(zhuǎn)動蝸桿、嵌于蝸桿螺旋槽中的錐形指銷一邊自轉(zhuǎn),一邊繞轉(zhuǎn)向搖臂軸做圓弧運動,從而帶動曲柄和轉(zhuǎn)向垂臂擺動,再通過轉(zhuǎn)向傳動機構(gòu)使轉(zhuǎn)向輪偏轉(zhuǎn)循環(huán)球式轉(zhuǎn)向器 :(1)結(jié)構(gòu) 循環(huán)球式轉(zhuǎn)向器一般有兩級傳動副組成:第一級是螺桿螺母傳動副;第二級一般采用齒條齒扇傳動副。 (2)工作過程這種轉(zhuǎn)向裝置是由齒輪機構(gòu)將來自轉(zhuǎn)向盤的旋轉(zhuǎn)力進行減速,使轉(zhuǎn)向盤的旋轉(zhuǎn)運動變?yōu)闇u輪蝸桿的旋轉(zhuǎn)運動,滾珠螺桿和螺母夾著鋼球嚙合,因而滾珠螺桿的旋轉(zhuǎn)運安徽工程大學畢業(yè)設計(論文)- 9 -動變?yōu)橹本€運動
20、,螺母再與扇形齒輪嚙合,直線運動再次變?yōu)樾D(zhuǎn)運動,使連桿臂搖動,連桿臂再使連動拉桿和橫拉桿做直線運動,改變車輪的方向。它的原理相當于利用了螺母與螺栓在旋轉(zhuǎn)過程中產(chǎn)生的相對移動,而在螺紋與螺紋之間夾入了鋼球以減小阻力,所有鋼球在一個首尾相連的封閉的螺旋曲線內(nèi)循環(huán)滾動,循環(huán)球式故而得名。1.2.3 齒輪齒條轉(zhuǎn)向器的優(yōu)缺點齒輪齒條轉(zhuǎn)向器是一種最常見的轉(zhuǎn)向器。其基本結(jié)構(gòu)是一對相互嚙合的小齒輪和齒條。轉(zhuǎn)向軸帶動小齒輪旋轉(zhuǎn)時,齒條便做直線運動。所以,這是一種最簡單的轉(zhuǎn)向器。齒輪齒條式轉(zhuǎn)向器因其結(jié)構(gòu)簡單、價格低廉、質(zhì)量輕、剛性好、使用可靠,近年來在世界,特別是在歐洲得到廣泛的應用,現(xiàn)在除了在轎車上使用外,在
21、轎車上使用外,在輕型汽車、微型汽車、賽車上也得到了推廣。優(yōu)點:(1) 構(gòu)造筒單,結(jié)構(gòu)輕巧。由于齒輪箱小,齒條本身具有傳動桿系的作用,因此,它不需耍循環(huán)球式轉(zhuǎn)向器上所使用的拉桿。 (2) 因齒輪和齒條直接嚙合,操縱靈敏性非常高。 (3) 滑動和轉(zhuǎn)動阻力小,轉(zhuǎn)矩傳遞性能較好,因此,轉(zhuǎn)向力非常輕。 (4) 轉(zhuǎn)向機構(gòu)總成完全封閉,可免于維護。(5) 剛度大,使轉(zhuǎn)向系統(tǒng)的自由行程變小 (6) 可自動補償齒輪和齒條見產(chǎn)生的間隙,并有均勻的固有阻尼。缺點:(1) 由于摩擦較小,所以沖擊敏感性較高。(2) 當采用兩端輸出結(jié)構(gòu)時,轉(zhuǎn)向拉桿長度受到限制,容易與懸架系統(tǒng)導向機構(gòu)產(chǎn)生跳動干涉。(3) 轉(zhuǎn)向傳動比隨車輪
22、轉(zhuǎn)角的增加而下降。(4) 采用可變速比時,普通工藝較難實現(xiàn)。1.3 汽車轉(zhuǎn)向器國內(nèi)外現(xiàn)狀及發(fā)展趨勢1.3.1 國內(nèi)外現(xiàn)狀轉(zhuǎn)向器是轉(zhuǎn)向系主要構(gòu)成的關(guān)鍵零件,隨著電子技術(shù)在汽車中的廣泛應用,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有 4 種:有蝸桿指銷式(WP 型)、蝸桿滾輪式(WR 型)、循環(huán)球式(BS 型)、齒輪齒條式(RP 型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占 45左右,齒條齒輪式轉(zhuǎn)向器占40左右,蝸桿滾輪式轉(zhuǎn)向器占 10左右,其它型式的轉(zhuǎn)向器占 5。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。我國的轉(zhuǎn)向器生產(chǎn),除早期投產(chǎn)
23、的解放牌汽車用蝸桿滾輪式轉(zhuǎn)向器,東風汽車用蝸桿肖式轉(zhuǎn)向器之外,其它大部分車型都采用循環(huán)球式結(jié)構(gòu),并都具有一定的生產(chǎn)經(jīng)驗。目前解放、東風也都在積極發(fā)展循環(huán)球式轉(zhuǎn)向器,并已在第二代換型車上普遍采用了循環(huán)球式轉(zhuǎn)向器。由此看出,我國的轉(zhuǎn)向器也在向大量生產(chǎn)循環(huán)球式轉(zhuǎn)向器發(fā)展。安徽工程大學畢業(yè)設計(論文)- 10 -在國外,循環(huán)球式轉(zhuǎn)向器實現(xiàn)了專業(yè)化生產(chǎn),同時以專業(yè)廠為主、大力進行試驗和研究,大大提高了產(chǎn)品的產(chǎn)量和質(zhì)量。在日本“精工”(NSK)公司的循環(huán)球式轉(zhuǎn)向器就以成本低、質(zhì)量好、產(chǎn)量大,逐步占領(lǐng)日本市場,并向全世界銷售它的產(chǎn)品。德國ZF 公司也作為一個大型轉(zhuǎn)向器專業(yè)廠著稱于世。它從 1948 年開始生
24、產(chǎn) ZF 型轉(zhuǎn)向器,年產(chǎn)各種轉(zhuǎn)向器 200 多萬臺。還有一些比較大的轉(zhuǎn)向器生產(chǎn)廠,如美國德爾福公司SAGINAW 分部;英國 BURM#0;AN 公司都是比較有名的專業(yè)廠家,都有很大的產(chǎn)量和銷售面。專業(yè)化生產(chǎn)已成為一種趨勢,只有走這條道路,才能使產(chǎn)品質(zhì)量高、產(chǎn)量大、成本低,在市場上有競爭力。1.3.2 轉(zhuǎn)向系的發(fā)展發(fā)展趨勢轉(zhuǎn)向系是用來保持或者改變汽車行使方向的機構(gòu),轉(zhuǎn)向系統(tǒng)應準確,快速、平穩(wěn)地響應駕駛員的轉(zhuǎn)向指令,轉(zhuǎn)向行使后或受到外界擾動時,在駕駛員松開方向盤的狀態(tài)下,應保證汽車自動返回穩(wěn)定的直線行使狀態(tài)。傳統(tǒng)的汽車轉(zhuǎn)向系統(tǒng)是機械式的轉(zhuǎn)向系統(tǒng),汽車的轉(zhuǎn)向由駕駛員控制方向盤,通過轉(zhuǎn)向器等一系列機
25、械轉(zhuǎn)向部件實現(xiàn)車輪的偏轉(zhuǎn),從而實現(xiàn)轉(zhuǎn)向。 近年來,隨著電子技術(shù)在汽車中的廣泛應用,轉(zhuǎn)向系統(tǒng)中也愈來愈多地采用電子器件。轉(zhuǎn)向系統(tǒng)因此進入了電子控制時代,相應的就出現(xiàn)了電液助力轉(zhuǎn)向系統(tǒng)。電液助力轉(zhuǎn)向可以分為兩類 :電動液壓助力轉(zhuǎn)向系統(tǒng) EHPS(Electro-Hydraulic Power Steering)和電控液壓助力轉(zhuǎn)向 ECHPS(Electronically Controlled Hydraulic Power Steering)。電動液壓助力轉(zhuǎn)向系統(tǒng)是在液壓助力系統(tǒng)基礎(chǔ)上發(fā)展起來的,與液壓助力系統(tǒng)不同的是,電動液壓助力系統(tǒng)中液壓系統(tǒng)的動力來源不是發(fā)動機而是電機,由電機驅(qū)動液壓系統(tǒng),節(jié)
26、省了發(fā)動機能量,減少了燃油消耗。電控液壓助力轉(zhuǎn)向也是在傳統(tǒng)液壓助力系統(tǒng)基礎(chǔ)上發(fā)展而來,它們的區(qū)別是,電控液壓助力轉(zhuǎn)向系統(tǒng)增加了電子控制裝置。電子控制裝置可根據(jù)方向盤轉(zhuǎn)向速率、車速等汽車運行參數(shù),改變液壓系統(tǒng)助力油壓的大小,從而實現(xiàn)在不同車速下,助力特性的改變。而且電機驅(qū)動下的液壓系統(tǒng),在沒有轉(zhuǎn)向操作時,電機可以停止轉(zhuǎn)動,從而降低能耗。雖然電液助力轉(zhuǎn)向系統(tǒng)克服了液壓助力轉(zhuǎn)向的一些缺點。但是由于液壓系統(tǒng)的存在,它一樣存在液壓油泄漏的問題,而且電液助力轉(zhuǎn)向系統(tǒng)引入了驅(qū)動電機,使得系統(tǒng)更加復雜,成本增加,可靠性下降。 為了規(guī)避電液助力轉(zhuǎn)向系統(tǒng)的缺點,電動助力轉(zhuǎn)向系統(tǒng) EPS(Electric Powe
27、r Steering)便應時而生。它與前述各種助力轉(zhuǎn)向系統(tǒng)最大的區(qū)別在于,電動助力轉(zhuǎn)向系統(tǒng)中已經(jīng)沒有液壓系統(tǒng)了。原來由液壓系統(tǒng)產(chǎn)生的轉(zhuǎn)向助力由電動機來完成。電動助力式轉(zhuǎn)向系統(tǒng)一般由轉(zhuǎn)矩傳感器、微處理器、電動機等組成。基本工作原理是 :當駕駛者轉(zhuǎn)動方向盤帶動轉(zhuǎn)向軸轉(zhuǎn)動時,安裝在轉(zhuǎn)動軸上的轉(zhuǎn)矩傳感器便將轉(zhuǎn)矩信號轉(zhuǎn)化為電信號并傳送至微處理器,微處理器根據(jù)轉(zhuǎn)矩信號并結(jié)合車速等其他車輛運行參數(shù),按照事先在程序中設定的處理方法得出助力電動機助力的方向和助力的大小。自1988 年日本鈴木公司首次在其 Cervo 車上裝備該助力轉(zhuǎn)向系統(tǒng)至今,電動助力轉(zhuǎn)向系統(tǒng)己經(jīng)得到人們的廣泛認可。此后,電動助力轉(zhuǎn)向技術(shù)得到迅
28、速發(fā)展,其應用范圍已經(jīng)從微型轎車向大型轎車和客車方向發(fā)展。1.4 設計的主要內(nèi)容安徽工程大學畢業(yè)設計(論文)- 11 -本次設計的課題來源于東風(集團)有限責任公司,以某款輕型汽車轉(zhuǎn)向器的參數(shù)作為依據(jù),設計一款適用于本公司某輕型車的轉(zhuǎn)向器。根據(jù)該車型對于市場的定位及對制造成本的考慮,同時參考同類車型的轉(zhuǎn)向系統(tǒng),將該車的轉(zhuǎn)向系統(tǒng)設計為一款機械式轉(zhuǎn)向系統(tǒng),對轉(zhuǎn)向系系統(tǒng)做簡單分析,并進行轉(zhuǎn)向器零件設計、整體設計,同時按以下步驟對轉(zhuǎn)向器及零部件進行設計方案論證:第一步對所選的轉(zhuǎn)向器總成進行剖析;第二部利用所學的知識對總成中的零部件進行力學分析和分析;第三步對分析中發(fā)現(xiàn)的不合理的設計進行改進。安徽工程大
29、學畢業(yè)設計(論文)- 12 -第二章第二章 轉(zhuǎn)向器的設計計算轉(zhuǎn)向器的設計計算2.1 轉(zhuǎn)向系主要參數(shù)的確定2.1.1 轉(zhuǎn)向系傳動比的確定轉(zhuǎn)向阻力矩wM 與前輪(轉(zhuǎn)向軸)負荷、輪胎尺寸和機構(gòu)、前輪定位參數(shù)、車速和道路條件等多種因數(shù)有關(guān),要準確計算轉(zhuǎn)阻力矩是很困難的,通常是以汽車在靜止時做原地轉(zhuǎn)向的阻力矩作為轉(zhuǎn)向阻力矩。根據(jù)原地轉(zhuǎn)向的試驗結(jié)果總結(jié)出來的經(jīng)驗計算公式為1PGMW313 (2-1)式中wM -轉(zhuǎn)向阻力矩(Nm) -輪胎與地面滑動摩擦系數(shù),一般令=0.71G-前軸(轉(zhuǎn)向軸)負荷,按汽車設計取滿載質(zhì)量的 55%,轎車滿載質(zhì)量為1210kg。1G=55%*1210*9.8=6521.9NP-輪
30、胎氣壓,取 0.24aMP則PGMW313=250.86 Nm轉(zhuǎn)向系的傳動比直接影響車輛的機動性和操控輕便性。轉(zhuǎn)向系的傳動比包括力傳動比pi 和角傳動比woi。轉(zhuǎn)向系力傳動比:轉(zhuǎn)向系力傳動比是指從輪胎接觸地面中心作用在兩個轉(zhuǎn)向輪上的合力 2wF 與作用在轉(zhuǎn)向盤上的手力hF之比,即pi =hwFF2 (2-2)安徽工程大學畢業(yè)設計(論文)- 13 -轉(zhuǎn)向阻力 2wF 等于轉(zhuǎn)向輪的轉(zhuǎn)向阻力矩wM 與轉(zhuǎn)向力臂之比 2wF =wM (2-3)式中為主銷偏移距,即轉(zhuǎn)向力臂,指從轉(zhuǎn)向節(jié)的主銷軸線的延長線與支撐平面的焦點至車輪中心平面與支撐平面交線間的距離。通常轎車的a值在 0406 倍輪胎的胎面寬度尺寸范
31、圍內(nèi)選取。轉(zhuǎn)向盤的直徑 D 有一系列尺寸。選用選用大的直徑尺寸時,會使駕駛員進出駕駛室感到困難。若選用小的直徑尺寸,在轉(zhuǎn)向時,駕駛員要施加較大的力量,從而使汽車難于操作,根據(jù)原始數(shù)據(jù)及相關(guān)手冊取 D=380mm,則由作用在方向盤上的力矩 hM =25mN 作用在轉(zhuǎn)向盤上的手力hF等于轉(zhuǎn)向盤的力矩hM與轉(zhuǎn)向盤的半徑 R 之比hF=RMh (2-4)則hF=RMh=131.5N 由公式(2-1)、(2-2)、(2-3) 則pi =hwMRM2 (2-5) 若忽略摩擦損失 hwMM2=kdd =woi (2-6) d為轉(zhuǎn)向盤轉(zhuǎn)角增量;kd為轉(zhuǎn)向節(jié)轉(zhuǎn)角增量。從式(2-6)可以看出,當轉(zhuǎn)向節(jié)轉(zhuǎn)角(車輪轉(zhuǎn)
32、角)k一定后,woi的大小直接影響輕便性與機動性,woi大轉(zhuǎn)向輕便,但轉(zhuǎn)向盤的轉(zhuǎn)動圈數(shù)增加,機動性降低。對機械轉(zhuǎn)向的汽車,woi可選大值,已達到轉(zhuǎn)向輕便的目的;對于動力轉(zhuǎn)向的汽車,輕便性不成問題,所以woi取小值。對一定車型woi都有一個大致的范圍,一般情況下,機械轉(zhuǎn)向的汽車,輕型車woi在 1523 之間,中型車 2530 之間。2則 pi =Riwo (2-7)安徽工程大學畢業(yè)設計(論文)- 14 -轉(zhuǎn)向系的角傳動比woi: 轉(zhuǎn)向系角傳動比指轉(zhuǎn)向盤轉(zhuǎn)角和駕駛員同側(cè)的轉(zhuǎn)向輪轉(zhuǎn)角之比,它由轉(zhuǎn)向器角傳動比wi和轉(zhuǎn)向傳動裝置角傳動比wi 所組成,即woi=wiwi (2-8)轉(zhuǎn)向器角傳動比等于轉(zhuǎn)向
33、盤的轉(zhuǎn)向角和轉(zhuǎn)向器轉(zhuǎn)向臂軸的轉(zhuǎn)角p之比wi =p (2-9)轉(zhuǎn)向傳動裝置的角傳動比等于轉(zhuǎn)向臂軸的轉(zhuǎn)角p之比wi =kp (2-10)將(2-9) 、 (2-10)帶入式(2-8)得 woi=k (2-11)由以上過程可計算出結(jié)果如下:1) 角傳動比 woi=hwMM2=2*250.86/25=20.072) 力傳動比 pi =Riwo 取=21B=21*B=90 式中 B 為輪胎面寬度,輕型車一般為 165195。 則pi =20.07*190/90=42.372.1.2 動力缸的設計計算根據(jù)轉(zhuǎn)向橫拉桿與車輪之間的垂直距離 L=0.2m 計算得:F=LMw=250.07/0.2=1250.35
34、N式中:F 為轉(zhuǎn)向橫拉桿上的理論推力。動力缸對于整體動力缸活塞與轉(zhuǎn)向器均布置在同一個由 QT400-18 或 KTH350-10 制造的轉(zhuǎn)向器殼體內(nèi),活塞與齒條制成一體。安徽工程大學畢業(yè)設計(論文)- 15 -在動力缸的計算中需確定其缸直徑、活塞行程活塞桿直徑以及缸筒壁厚。動力缸殼體采用 ZL105 鑄造而成,缸內(nèi)表面應光潔,粗糙度aR =0.320.63,硬度為 HB241285,活塞采用優(yōu)質(zhì)碳素鋼 45 號鋼;活塞與缸筒之間的間隙采用橡膠密封圈。(1)缸徑cD 的計算 由上面可知,轉(zhuǎn)向系統(tǒng)要求動力缸所提供的動力為 2900N,動力缸的缸徑尺寸cD 可由作用在活塞上的力的平衡計算,得cD =
35、621014. 34pFd (2-12)式中:P 為供油壓力,MPa,設計時取 P=13MPa;d 為活塞桿直徑;F 為液壓缸理論推力。根據(jù)液壓設計手冊中推薦的活塞桿直徑系列初選 d=20mm cD =623101014. 33 .12504)1020(0.0237m取 D=35,此時,符合 d=(3185)D 的范圍。(2)活塞的設計計算活塞的寬度一般為活塞外徑的 0.61.0 倍,但本次設計采用一道密封環(huán)形,在所選厚度滿足強度的條件下,可以放窄一點。初取 b=0.7mm。活塞的外徑配合一般采用 H7/f9 的配合公差帶,外徑和內(nèi)徑的同軸度公差不大于0.02,端面與軸線的垂直公差度公差不大于
36、 0.04mm/100mm,外表面的圓度和圓柱度一般不大于外徑公差的一半,表面粗糙度視結(jié)構(gòu)不同而各異,材料用和活塞相同的材料 45號鋼。(3)活塞行程計算s=12e +1s +b式中:1e 為導向游隙, (0.50.6)D; 1s 為活塞桿行程;b 為活塞寬度。1s 的取值可根據(jù)同類汽車的活塞桿行程,初取1s =131mm。(4)動力缸殼體壁厚 t 的設計計算根據(jù)缸體在橫斷平面內(nèi)的拉伸強度條件和在軸向平面內(nèi)的拉伸強度條件,計算出缸的壁厚,取計算結(jié)果大的一個安徽工程大學畢業(yè)設計(論文)- 16 - ntDDPnttDDpscczsccr2222412 (2-13)式中:p為缸內(nèi)壓力,取maxP
37、=13MP;cD 為動力缸直徑,mm;t 為動力缸殼體厚度,mm;n 為安全系數(shù),n=3.55.0;s為殼體的屈服點。殼體采用鑄造鋁合金 ZL105,抗拉強度為 500MPa,屈服點為 160230MPa。 r =135 . 323014024022tt z=135 . 32304044022tt t8 . 8 取 t=10mm。2.2 齒輪齒條轉(zhuǎn)向器設計計算對具體零件的設計計算,期中齒輪的設計時依據(jù)參數(shù)的確定,通過對齒面接觸應力、齒根彎曲應力的計算來校核其強度,從而確定具體尺寸。同時也要對活塞桿以及轉(zhuǎn)閥中的扭桿進行強度校核。2.2.1 主要設計參數(shù)的選擇 名稱代號 數(shù)值 模數(shù)m 2 齒數(shù)z
38、8 壓力角 20 齒頂高系數(shù)ah 1 頂隙系數(shù)c 0.25 表 1 齒輪主要設計參數(shù)安徽工程大學畢業(yè)設計(論文)- 17 -2.2.2 齒輪齒條參數(shù)的計算齒輪計算過程如下mmzmdn4 .1612cos82cosmmmhddana4 .201224 .162mmdf4 .1154 .16齒條的計算過程如下mmmhhaa212*mmmchahf5 . 2225. 1*ah為齒頂高系數(shù)(=1);*c為頂隙系數(shù)(0.25);全齒高等于 4.5mm;齒距semP2228. 6214. 32.2.3 按齒根彎曲疲勞強度計算校核FanSaFatFbmYYYKF (2-14)式中:K 為計算載荷系數(shù)KKKK
39、KvA;AK 為使用系數(shù),AK =1.0;VK 為動載荷系數(shù),VK =1.2;K 為齒間載荷分配系數(shù),K =1.0;K 為齒向載荷分配系數(shù),K =1.4。68. 14 . 10 . 12 . 10 . 1KFaY為直齒輪的齒形系數(shù),查取FaY=2.72;SaY 為直齒輪的應力校正系數(shù),為1.57;Y為螺旋角影響系數(shù),為 0.7;a為斷面重合度,為 1.211;b為齒寬,b=40mm。MPaF4 .30211. 15407 . 057. 172. 28 .97068. 1因為齒輪材料用 45 號鋼,根據(jù)手冊查得: F=330MPa,可以看出 FF,合乎設計要求。安徽工程大學畢業(yè)設計(論文)- 1
40、8 -2.2.4 按齒面接觸疲勞強度校核HEHatHZZuubdKF11 (2-15)式中HZ 為區(qū)域系數(shù),設計時取HZ =2.6;EZ 為彈性影響系數(shù),設計時取,EZ =188;H為齒面接觸允許硬度,H=650700MPa。MPauuH9 .6888. 16 . 21211. 14 .16408 .97068. 1第三章第三章 轉(zhuǎn)向器三維模型的建立轉(zhuǎn)向器三維模型的建立此次設計使用三維設計軟件 Pro/E,即 Pro/ENGINEER(簡稱 Pro/E)是美國 PTC 公司開發(fā)的參數(shù)化三維設計軟件,它是當今主流的三維 CAD/CAM 軟件之一,廣泛應用于機械、模具、工業(yè)設計、汽車、航天、電子、
41、通信、家電、玩具等各行各業(yè)。Pro/ENGINEER Wildfire5.0 版,是 PTC 公司相對較新的版本,相對于老版,增添了不少的功能。3.1 轉(zhuǎn)向器方向盤的建立過程(1)單擊工具欄的文件按鈕新建文件,彈出【新建】對話框。選擇零件、實體,重新命名為 fangxiangpan,取消【使用缺省模板】 ,點擊確定。(2)點擊【插入】 ,選擇下拉菜單中的【掃描】 ,進入如下界面,如圖 3-1。接著定義對話框中的軌跡,軌跡為半徑為 380mm 的圓,如圖 3-2,圖 3-3;截面為 35mm的圓,都完成之后,點擊確定。這就完成了第一步,方向盤圓環(huán)的建立,如圖 3-4。圖 3-1 掃描對話框 安徽
42、工程大學畢業(yè)設計(論文)- 19 -圖 3-2 軌跡 圖 3-3 截面圖 3-4 方向盤圓盤(3)點擊【草繪】 ,在 top 面內(nèi)進行草繪,完成這一步之后,進行內(nèi)部造型規(guī)劃。再次單擊【草繪】 ,進入草繪界面后,點擊菜單欄中的【草繪】 ,選擇下拉菜單中的【參照】再點擊過濾窗口,選擇【邊】 ,然后在圖形中選擇方向盤圓盤的內(nèi)邊,點擊構(gòu)造線按鈕,繪制出圖 1 的形狀的三個圓,大小分別為 80mm、193.57mm、255.72mm,完成這一步后,再點擊草繪,以 Top 面為草繪平面,繪制出如圖 2 的線條,先畫出,左邊的一半,然后,選擇左邊的這一半,然后點擊【鏡像】 ,選擇中間軸線,又半部分的線條就能
43、完成。這樣,就完成了內(nèi)部線條的規(guī)劃,如圖 3-5。安徽工程大學畢業(yè)設計(論文)- 20 -圖 3-5 方向盤圓盤內(nèi)部線條規(guī)劃圖 3-6 內(nèi)部設計線條(4)點擊【插入】 ,選擇下拉菜單中的【造型】 ,進入【造型】界面之后,點擊【設置活動平面】 ,將活動平面設置為 Front 面,點擊鼠標右鍵,選擇【活動平面方向】 ,繪制線條,再選著 Right 面,用同樣的方法繪制兩條線,繪制完成后,進行適當調(diào)整,最后點擊確定【確定】退出造型,如圖 3-6。(5)點擊【插入】 ,選擇下拉菜單中的【混合曲面掃面】 ,進入界面后,按住 ctrl 鍵,選擇橫向的兩條線,右擊鼠標,選擇【第二方向曲線】 ,再按住 ctr
44、l 鍵,選擇縱向的兩條線,點擊【確定】 。再以同樣的方法做出其它兩個面。(6)選著兩個曲面,點擊合【合并】 ,并且可以修建掉多余的部分,無法用合并去掉的部分,就使用【修建】去除多余部分。合并完成后,點擊【編輯】 ,選擇下拉菜單中的【填充】 ,將整個曲面封閉,最后再將真?zhèn)€曲面合并為一個曲面。(7)點擊編輯,選擇下拉菜單中的【實體化】 ,將整個曲面變成一個實體。最后,對各個棱角倒圓角。并添加必要的軸,為裝配做準備。效果如圖 3-7。安徽工程大學畢業(yè)設計(論文)- 21 -圖 3-7 方向盤效果圖3.2 齒輪齒條模型建立的過程3.2.1 小齒輪的建立過程1. 新建文件(1)依次執(zhí)行【文件】|【新建】
45、菜單命令,或者單擊【文件】工具欄上的【創(chuàng)建新對象】按鈕,打開【新建】對話框。(2)在【名稱】文本框中輸入文件名“xiaochilun” ,單擊取消【使用缺省模板】復選框的缺省選中狀態(tài),保持該對話框中其它缺省設置不變,單擊【確定】按鈕。(3)在打開的【新文件選項】對話框中單擊選取“mmns_part_solid”選項,單擊【確定】按鈕,進入零件環(huán)境。 2.創(chuàng)建參數(shù)(1)依次執(zhí)行【工具】|【參數(shù)】菜單命令,打開【參數(shù)】對話框。(2)單擊【參數(shù)】對話框中的【添加新參數(shù)】按鈕,輸入?yún)?shù)名稱“z” ,保持缺省的“實數(shù)”類型不變,將“值”設置為 8,在“說明”列的文本框中輸入?yún)?shù)的注釋“齒數(shù)” 。(3)單
46、擊【參數(shù)】對話框中的【添加新參數(shù)】按鈕,輸入?yún)?shù)名稱“m” , 保持缺省的“實數(shù)”類型不變,將“值”設置為 2,在“說明”列的文本框中國輸入?yún)?shù)的注釋“模數(shù)” 。(4)單擊【參數(shù)】對話框中的【添加新參數(shù)】按鈕,輸入?yún)?shù)名稱“ha” , 保持缺省的“實數(shù)”類型不變,將“值”設置為 1,在“說明”列的文本框中國輸入?yún)?shù)的注釋“齒頂高系數(shù)” 。(5)單擊【參數(shù)】對話框中的【添加新參數(shù)】按鈕,輸入?yún)?shù)名稱“alpha” , 保持缺省的“實數(shù)”類型不變,將“值”設置為 20,在“說明”列的文本框中國輸入?yún)?shù)的注釋“壓力角” 。(6)單擊【參數(shù)】對話框中的【確定】按鈕,關(guān)閉【參數(shù)】對話框。安徽工程大學畢業(yè)
47、設計(論文)- 22 -3.創(chuàng)建關(guān)系式(1)依次執(zhí)行【工具】|【關(guān)系】菜單命令,打開【關(guān)系】對話框,創(chuàng)建關(guān)系式,如圖3-8。(2)單擊【查找范圍】選項組中左側(cè)的下拉列表框,單擊選取下拉列表中的【零件】選項。單擊右側(cè)的下拉列表框,在彈出的下拉列表中單擊選取【xiaochilun】文件。 (3)在【關(guān)系】文本框中輸入下面的關(guān)系式,按“Enter”鍵換行。D=m*zda=(z+2*ha)*mdf=(z-2*ha-2*c)*mdb=d*cos(alpha) 圖 3-8 關(guān)系對話框(4)輸入完成后,單擊【關(guān)系】對話框中的【確定】按鈕,完成關(guān)系式的創(chuàng)建。4.創(chuàng)建基準草繪(1)依次執(zhí)行【插入】|【模型基準】
48、|【草繪】菜單命令,或者單擊【基準】工具欄上的【草繪工具】按鈕,打開【草繪】對話框。(2)單擊選取“Front”面作為草繪平面。保持對話框匯總的其它缺省設置不變,單擊【草繪】按鈕,進入草繪環(huán)境。(3)繪制 4 個任意直徑的圓。(4)依次執(zhí)行【工具】|【關(guān)系】菜單命令,打開【關(guān)系】對話框。在【關(guān)系】對話框中輸入(sd0=df sd1=db sd2=d sd3=da)關(guān)系式,按“Enter”鍵換行。(5)單擊【確定】按鈕,結(jié)束基準草繪圖元的繪制。5.創(chuàng)建漸開線(1)依次執(zhí)行【插入】|【模型基準】|【曲線】菜單命令,或者單擊【基準】工具欄上的【插入基準曲線】按鈕,打開菜單管理器。(2)在菜單管理器中
49、依次執(zhí)行【從方程】 、 【完成】菜單命令,打開【選取】對話框和【曲線:從方程】對話框。安徽工程大學畢業(yè)設計(論文)- 23 -(3)在工作窗口或者模型樹種單擊選取系統(tǒng)坐標系,在菜單管理器中執(zhí)行【笛卡爾】菜單命令,打開一個記事本文檔,在記事本文檔輸入漸開線方程。r=db/2theta=t*55x=r*cos(theta)+sin(theta)*theta*pi/180y=r*sin(theta)-r*cos(theta)*theta*pi/180z=0(4)在記事本中依次執(zhí)行【文件】|【保存】菜單命令,保存輸入的漸開線方程。接著在記事本中依次執(zhí)行【文件】|【退出】菜單命令,關(guān)閉記事本。(5)單擊
50、【曲線:從方程】對話框中的【預覽】按鈕,預覽創(chuàng)建的基準曲線特征。預覽無誤后,單擊【曲線:從方程】對話框中的【確定】按鈕,完成基準曲線的創(chuàng)建。6.創(chuàng)建齒輪輪胚(1)依次執(zhí)行【插入】|【拉伸】菜單命,激活拉伸操控板。(2)單擊拉伸控制板中的【拉伸為實體】按鈕,將拉伸操作作為設置為實體模型。(3)以齒頂圓為輪廓,拉伸一個圓柱,圓柱的度為齒輪的齒寬 b。(4)創(chuàng)建基準點 PNT0。以創(chuàng)建的漸開線和分度圓為基準。再以 Top 面和 Right 面為基準創(chuàng)建軸 A_1。接著以點 PNT0 和軸 A_1 創(chuàng)建面 DTM1。再將 DTM1 偏轉(zhuǎn) 90/Z 得到 DTM2。(5)將漸開線以 DTM2 為鏡面,鏡
51、像。這樣,得到兩個對稱的漸開線。以齒根圓和和兩條對稱的漸開線以及齒頂圓組成的封閉圖形。拉伸,去除材料。7.陣列齒槽(1)在工作窗口或者模型樹種單擊選中創(chuàng)建的齒槽特征,依次執(zhí)行【編輯】|【陣列】菜單命令,激活陣列控制面板。(2)單擊操控板中的陣列參照類型下拉列表框,單擊選取下拉列表中的【軸】選項。(3)單擊控制板中的【選取項目】列表框,在工作哦窗口中單擊選取旋轉(zhuǎn)特征的中心軸線 A_1 軸。將陣列數(shù)目和陣列角度分別設置為“8”和“360/Z” 。單擊完成。8.創(chuàng)建其它特征(1)點擊【插入】|【拉伸】 ,創(chuàng)建軸承端。(2)創(chuàng)建油槽。整體效果如圖 3-9。圖 3-9 小齒輪效果圖安徽工程大學畢業(yè)設計(
52、論文)- 24 -3.2.2 齒條的創(chuàng)建1. 新建文件,進入編輯界面。2. 依次執(zhí)行【插入】|【拉伸】菜單命,激活拉伸操控板。選擇 Top 面,創(chuàng)建一個直徑 38mm 的圓,點擊。長度設置為 650mm,點擊確定。3. 依次執(zhí)行【插入】|【拉伸】菜單命,激活拉伸操控板。選擇 Front 面,進入草繪后,創(chuàng)建一個長方形,長度為 110mm。點擊確定后,選擇去除材料。點擊確定。4. 依次執(zhí)行【插入】|【拉伸】菜單命,激活拉伸操控板。選擇 Front 面,進入草繪后,創(chuàng)建一個梯形齒槽。點擊確定后,選擇去除材料。點擊確定。5. 單擊基準欄中的,激活陣列控制板。在第一個選擇欄中選擇【方向】 ,將陣列數(shù)目
53、設置為 21,將陣列距離設置為 5mm。點擊,即完成了齒條的創(chuàng)建。整體效果如圖 3-10。圖 3-10 齒條效果圖3.2.3 動力缸的建立1.新建文件。2.依次執(zhí)行【插入】|【拉伸】菜單命令,激活拉伸控制面板。3.創(chuàng)建底板。厚度為 12mm。4.創(chuàng)建缸體主體。以地板的一面為基面,拉伸長度為 250mm 的圓柱,截面為 56mm。創(chuàng)建拉伸,以 Top 面為基面,拉伸一個截面為 35mm 圓,長 250mm,選擇去除材料。5.創(chuàng)建加強筋。在缸體表面創(chuàng)建一個邊長為 1mm 的正方形,長為 250mm,選擇實體。點擊確定。單擊基準欄中的,激活陣列控制板選擇“軸” ,將陣列數(shù)目設置為 6,陣列角度設置為
54、 60,點擊確定。6.進行它部分的創(chuàng)建。最后進行倒圓角,進行工藝修繕。整體效果如圖 3-11。安徽工程大學畢業(yè)設計(論文)- 25 -圖 3-11 動力缸效果圖3-12 部分零件圖安徽工程大學畢業(yè)設計(論文)- 26 -3.3 轉(zhuǎn)向器的裝配過程轉(zhuǎn)向器的裝配過程 1.新建文件(1)依次執(zhí)行【文件】|【新建】菜單命令,或者單擊【文件】工具欄上的【創(chuàng)建新對象】按鈕,打開【新建】對話框。(2)選擇【組件】 ,在【名稱】文本框中輸入文件名“zhuanxiangqi” ,單擊取消【使用缺省模板】復選框的缺省選中狀態(tài),保持該對話框中其它缺省設置不變,單擊【確定】按鈕。(3)在打開的【新文件選項】對話框中單擊
55、選取“mmns_asm_design”選項,單擊【確定】按鈕,進入組件環(huán)境。2.添加零件(1)依次執(zhí)行【插入】|【原件】|【裝配】 ,或者點擊基準欄中的,選擇第一個要添加的零件缸體。缸體作為其它零件的基準,其它零件添加時,都以缸體作為基準來設定各自的位置。因此缸體是固定不動的,故在第二欄里選擇,點擊。(2)依次執(zhí)行【插入】|【原件】|【裝配】 ,選擇缸套,打開控制板,因為缸套相對于缸體是不動的,所以選擇【剛性】 、 【配對】 、 【重合】 ,點擊【放置】 ,選擇,選擇缸體的端面 F5 和套筒的端面 F5;再點擊【新建集】 ,選擇缸體曲面 F6 和套筒曲面 F6,選擇,點擊確定。(3)同樣的方法
56、,添加閥殼。(4)依次執(zhí)行【插入】|【原件】|【裝配】,選擇閥芯,閥芯相對于小齒輪是靜止的,故以剛性與小齒輪相配合。(5)依次執(zhí)行【插入】|【原件】|【裝配】,選擇轉(zhuǎn)向下軸,轉(zhuǎn)向下軸與閥芯相對靜止,故也選擇剛性與閥芯相配合。(6)依次執(zhí)行【插入】|【原件】|【裝配】,選擇齒條,打開控制板,齒條與閥體是滑動配對,故選擇滑動桿,點擊【放置】 ,點擊【軸對齊】 ,選擇齒條的中心軸 A_1、閥體 A_1;點擊【旋轉(zhuǎn)】 ,選擇齒條的齒端面 F7、閥體底座側(cè)面 F5。的中心軸 A_齒條端面與閥體端面的距離設定為 70mm。這一步,特別要注意需要將齒輪的分度圓與齒條的分度線進行相切,這一步關(guān)于裝配體導入 A
57、DMAS 軟件建立齒輪副,所以顯得尤其重要。5(7)其它零件以同樣的方法裝配到已經(jīng)完成的主體上。整體效果如圖 3-13。安徽工程大學畢業(yè)設計(論文)- 27 -圖 3-13 整體效果圖安徽工程大學畢業(yè)設計(論文)- 28 -第四章第四章 轉(zhuǎn)向器的運動仿真分析轉(zhuǎn)向器的運動仿真分析4.1 MSC.ADAMS 軟件介紹ADAMS,即機械系統(tǒng)動力學自動分析(Automatic Dynamic Analysis of Mechanical Systems),該軟件是美國 MDI 公司(Mechanical Dynamics Inc.)開發(fā)的虛擬樣機分析軟件。ADAMS 已經(jīng)被全世界各行各業(yè)的數(shù)百家主要制
58、造商采用。根據(jù) 1999年機械系統(tǒng)動態(tài)仿真分析軟件國際市場份額的統(tǒng)計資料,ADAMS 軟件銷售總額近八千萬美元、占據(jù)了 51%的份額,現(xiàn)已經(jīng)并入美國 MSC 公司。ADAMS 軟件使用交互式圖形環(huán)境和零件庫、約束庫、力庫,創(chuàng)建完全參數(shù)化的機械系統(tǒng)幾何模型,其求解器采用多剛體系統(tǒng)動力學理論中的拉格朗日方程方法,建立系統(tǒng)動力學方程,對虛擬機械系統(tǒng)進行靜力學、運動學和動力學分析,輸出位移、速度、加速度和反作用力曲線。ADAMS 軟件的仿真可用于預測機械系統(tǒng)的性能、運動范圍、碰撞檢測、峰值載荷以及計算有限元的輸入載荷等。ADAMS 一方面是虛擬樣機分析的應用軟件,用戶可以運用該軟件非常方便地對虛擬機械
59、系統(tǒng)進行靜力學、運動學和動力學分析。另一方面,又是虛擬樣機分析開發(fā)工具,其開放性的程序結(jié)構(gòu)和多種接口,可以成為特殊行業(yè)用戶進行特殊類型虛擬樣機分析的二次開發(fā)工具平臺。ADAMS 軟件由基本模塊、擴展模塊、接口模塊、專業(yè)領(lǐng)域模塊及工具箱 5 類模塊組成。用戶不僅可以采用通用模塊對一般的機械系統(tǒng)進行仿真,而且可以采用專用模塊針對特定工業(yè)應用領(lǐng)域的問題進行快速有效的建模與仿真分析。Adams 是全球運用最為廣泛的機械系統(tǒng)仿真軟件,用戶可以利用 Adams 在計算機上建立和測試虛擬樣機,實現(xiàn)事實再現(xiàn)仿真,了解復雜機械系統(tǒng)設計的運動性能。MD Adams/Car應用 MD Adams/Car,技術(shù)團隊可
60、以快速建立和測試整車和子系統(tǒng)的功能化虛擬樣車。這可以幫助在車輛研發(fā)過程中節(jié)省時間、降低費用和風險,提升新車設計的品質(zhì)。通過。多學科的價值在于大大地拓廣了數(shù)字分析的能力,MSC 的 MD 技術(shù)是優(yōu)化的涵蓋跨學科/多學科的集成,可以充分利用現(xiàn)有的高性能計算技術(shù)解決大量大規(guī)模的問題。多學科技術(shù)聚焦于提升仿真效率、保證設計初期設計的有效性、提升品質(zhì)、加速產(chǎn)品投放市場。4.2 三維模型的導入過程和定義約束4.2.1 模型的導入由于版本的限制,Pro/E 建立的模型不能直接導入 ADAMS,因此需要一步中間操作,進行格式的轉(zhuǎn)換。導入的過程如下:安徽工程大學畢業(yè)設計(論文)- 29 -(1) 找到轉(zhuǎn)向器的
61、Pro/E 裝配文件 asm_25,點擊文件,由 Pro/E 打開后,依次執(zhí)行【文件】|【保存副本(A) 】 ,打開對話框后,填寫新名稱為 zhuangxiangqi_25,類型選擇為 Prasolid(*.x_t) ,單擊 OK 按鈕。(2) 打開 ADAMS 軟件的 View 模塊,進入此模塊頁面。點擊新建 model 按鈕,進入新建模型對話框,修改工作目錄,點擊 OK,進入工作頁面。(3) 點擊【File】 ,選擇【import】 。進入對話框后,文件類型選擇為 parasolid,第二項選擇文件位置。命名模型名稱為 yu,再點擊 OK,轉(zhuǎn)向器的裝配圖即導入了ADAMS,進入后,點擊【V
62、iew】下的【Refresh】 ,轉(zhuǎn)向器的模型即可顯現(xiàn),見下圖:圖 4-1 文件導入對話框圖 4-2 整體效果圖(4)通過點擊工具箱中按鈕,將其變?yōu)閷嶓w輪廓,然后通過按鈕(或左鍵+R)旋轉(zhuǎn),右擊整體圖中不同的 Part 分別進行拼音重命名,這樣便于約束定義。4.2.2 定義約束運用 ADAMS 對虛擬樣機進行仿真和一般的三維設計軟件一樣,需要在仿真前,對零部件進行約束定義,確定零部件之間的運動關(guān)系以及誰相對于誰運動的關(guān)系。在零部件之間添加運動副,沒有相對運動的零件之間運用布爾運算鏈接在一起。(1)方向盤相對于轉(zhuǎn)向器上軸是相對靜止的,因此,對方向盤和轉(zhuǎn)向器上軸添加布爾求和,將方向盤和轉(zhuǎn)向器上軸鏈
63、接起來,成為一個整體。安徽工程大學畢業(yè)設計(論文)- 30 -(2)對轉(zhuǎn)向上軸和轉(zhuǎn)向柱管添加旋轉(zhuǎn)副,點擊,選擇 2 Bod-1 Loc 及 Pick Feature,選擇實體,先點擊方向盤,再點擊轉(zhuǎn)向柱管,中心選擇方向盤的旋轉(zhuǎn)中心,方向沿轉(zhuǎn)向柱外殼軸線方向。則旋轉(zhuǎn)副 1 建立完成。(3)將轉(zhuǎn)向器的液壓缸的三個部分,PART2、PART3、PART4 運用布爾求和,使上訴三個部分連接成為一個整體。點擊,然后選擇 PART2、PART3,完成后,得到 PART3,這樣,PART2、PART3 即成為了一個整體 PART3。同樣的方法,完成后,得到 PART4。(4)在上軸 U 型節(jié)及下軸的 U 型
64、節(jié)施加萬向副。雙擊按鈕(單擊為胡克副) ,選擇 2 Bod-1 Loc 及 Pick Feature,選擇實體,單擊上軸 U 型節(jié),再單擊下軸的 U 型節(jié),方向分別正確選取沿十字軸的軸線方向。則萬向副 2 被建立。(5)在下臂和齒輪間施加圓柱副。點擊按鈕,選擇 2 Bod-1 Loc 及 Pick Feature,選擇實體,先選擇下臂,在選擇齒輪,中心選擇下臂中心,方形沿軸線方向。則圓柱副 3 被建立。(6)在齒輪和轉(zhuǎn)向器缸體之間建立旋轉(zhuǎn)副。選擇 2 Bod-1 Loc 及 Pick Featur,然后選擇小齒輪和轉(zhuǎn)向器缸體。中心選擇齒輪中心,方向沿軸線方向,則螺旋副 4 建立。(7)在齒條和
65、轉(zhuǎn)向器缸體之間建立移動副。點擊按鈕,選擇 2 Bod-1 Loc 及 Pick Feature,先選擇齒條,再選擇缸體 PART4,中心選擇齒條中心,方向沿齒條軸線,移動副 5 建立。(8)在小齒輪和齒條之間建立齒輪副。第一步要找到共速 MARKER 點,點擊按鈕,選擇 Add to Ground,Orientation 選擇 Global XY,再點擊按鈕,在位移中填寫5.25mm(即齒輪分度圓與齒條分度線切點) 。共速點重命名為 Marker_CV。再點擊按鈕,系統(tǒng)彈出一對話框,在 Joint Name 中填寫旋轉(zhuǎn)副 4 和移動副 5,共速點選擇剛剛建立的點 Marker_CV。單擊 OK
66、,則齒輪副 6 建立。(9)有時,固定副由于連接點的數(shù)量較多,或者是連接點選擇的不標準導致固定副的難以添加。這時候,可以選擇使用布爾運算。對齒條和齒條球頭副副套使用布爾求和,使這兩個零件連接成為一個整體,再點擊按鈕,選擇 2 Bod-1 Loc 及 Pick Feature,選擇實體,先選擇球頭副套,在選擇橫拉桿,中心選擇球頭副套中心,方向選擇軸方向,則球副 7 完成。若方向不對,可以通過右擊該副選擇 Modify,在彈出的對話框中點擊按鈕,系統(tǒng)又彈出一低昂對話框,在旋轉(zhuǎn)角度中改寫 90 度,選擇x、y、z 軸中的正確一軸,調(diào)整球副 7,使其副軸線沿齒條中軸線。(10)將橫拉桿接頭和橫拉桿運用布爾求和成其成為一個整體,再將橫拉桿和銷運用布爾求和,使其成為一個整體。轉(zhuǎn)向柱銷和大地之間施加固定副 8。兩螺母和柱銷之間施加固定副 9、10,摩擦盤和轉(zhuǎn)向節(jié)施加固定副 12。(11)在轉(zhuǎn)向節(jié)和轉(zhuǎn)向橫拉桿之間建立轉(zhuǎn)動副 13,選擇 2 Bod-1 Loc 及 Pick Feature,選擇實體,先選擇球頭副套,在選擇橫拉桿,中心選擇球頭副套中心,方向選擇軸方向,則球副 13 完成。(12)因為齒條
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。