2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 解析幾何 課下層級(jí)訓(xùn)練42 直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式(含解析)文 新人教A版.doc
《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 解析幾何 課下層級(jí)訓(xùn)練42 直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式(含解析)文 新人教A版.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 解析幾何 課下層級(jí)訓(xùn)練42 直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式(含解析)文 新人教A版.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課下層級(jí)訓(xùn)練(四十二) 直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式 [A級(jí) 基礎(chǔ)強(qiáng)化訓(xùn)練] 1.命題p:“a=-2”是命題q:“直線(xiàn)ax+3y-1=0與直線(xiàn)6x+4y-3=0垂直”成立的( ) A.充要條件 B.充分不必要條件 C.必要不充分條件 D.既不充分也不必要條件 A [直線(xiàn)ax+3y-1=0與直線(xiàn)6x+4y-3=0垂直的充要條件是6a+12=0,即a=-2.] 2.(2019湖南衡陽(yáng)月考)三條直線(xiàn)l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0圍成一個(gè)三角形,則k的取值范圍為( ) A.{k|k≠5且k≠1} B.{k|k≠5且k≠-10} C.{k|k≠1且k≠0} D.{k|k≠5} B [三條直線(xiàn)圍成一個(gè)三角形,則三條直線(xiàn)互不平行,且不過(guò)同一點(diǎn),∴-k5≠0,且51-k-15≠0,∴k≠5且k≠-10. ] 3.(2019山東臨沂聯(lián)考)數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書(shū)中提出:任意三角形的外心、重心、垂心在同一條直線(xiàn)上,后人稱(chēng)這條直線(xiàn)為歐拉線(xiàn).已知△ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線(xiàn)的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)是( ) A.(-4,0) B.(0,-4) C.(4,0) D.(4,0)或(-4,0) A [當(dāng)頂點(diǎn)C的坐標(biāo)是(-4,0)時(shí),三角形重心坐標(biāo)為,在歐拉線(xiàn)上,對(duì)于其他選項(xiàng),三角形重心都不在歐拉線(xiàn)上.] 4.從點(diǎn)(2,3)射出的光線(xiàn)沿與向量a=(8,4)平行的直線(xiàn)射到y(tǒng)軸上,則反射光線(xiàn)所在的直線(xiàn)方程為( ) A.x+2y-4=0 B.2x+y-1=0 C.x+6y-16=0 D.6x+y-8=0 A [由直線(xiàn)與向量a=(8,4)平行知,過(guò)點(diǎn)(2,3)的直線(xiàn)的斜率k=,所以直線(xiàn)的方程為y-3=(x-2),其與y軸的交點(diǎn)坐標(biāo)為(0,2),又點(diǎn)(2,3)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為(-2,3),所以反射光線(xiàn)過(guò)點(diǎn)(-2,3)與(0,2),由兩點(diǎn)式知A正確.] 5.直線(xiàn)l1過(guò)點(diǎn)(-2,0)且傾斜角為30,直線(xiàn)l2過(guò)點(diǎn)(2,0)且與直線(xiàn)l1垂直,則直線(xiàn)l1與直線(xiàn)l2的交點(diǎn)坐標(biāo)為_(kāi)_________. (1,) [直線(xiàn)l1:x-3y+2=0,直線(xiàn)l2:x+y-2=0,聯(lián)立方程組可求得x=1,y=.] 6.已知兩點(diǎn)A(-m,0)和B(2+m,0)(m>0),若在直線(xiàn)l:x+y-9=0上存在點(diǎn)P,使得PA⊥PB,則實(shí)數(shù)m的取值范圍是__________. m≥3 [設(shè)P(x,y),則kPA=,kPB=, 由已知可得 消去x得4y2-16y+63-m2-2m=0, 由題意得 解得m≥3.] 7.已知0<k<4,直線(xiàn)l1:kx-2y-2k+8=0和直線(xiàn)l2:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則使得這個(gè)四邊形面積最小的k值為_(kāi)_________. [由題意知直線(xiàn)l1,l2恒過(guò)定點(diǎn)P(2,4),直線(xiàn)l1的縱截距為4-k,直線(xiàn)l2的橫截距為2k2+2,如圖, 所以四邊形的面積S=2k22+(4-k+4)2=4k2-k+8,故面積最小時(shí),k=.] 8.已知兩直線(xiàn)l1:ax-by+4=0和l2:(a-1)x+y+b=0,求滿(mǎn)足下列條件的a,b的值. (1)l1⊥l2,且直線(xiàn)l1過(guò)點(diǎn)(-3,-1); (2)l1∥l2,且坐標(biāo)原點(diǎn)到這兩條直線(xiàn)的距離相等. 解 (1)∵l1⊥l2,∴a(a-1)-b=0. 又∵直線(xiàn)l1過(guò)點(diǎn)(-3,-1),∴-3a+b+4=0. 故a=2,b=2. (2)∵直線(xiàn)l2的斜率存在,l1∥l2, ∴直線(xiàn)l1的斜率存在. ∴k1=k2,即=1-a. 又∵坐標(biāo)原點(diǎn)到這兩條直線(xiàn)的距離相等, ∴l(xiāng)1,l2在y軸上的截距互為相反數(shù),即=b. 故a=2,b=-2或a=,b=2. 9.已知直線(xiàn)l:(2a+b)x+(a+b)y+a-b=0及點(diǎn)P(3,4). (1)證明直線(xiàn)l過(guò)某定點(diǎn),并求該定點(diǎn)的坐標(biāo); (2)當(dāng)點(diǎn)P到直線(xiàn)l的距離最大時(shí),求直線(xiàn)l的方程. (1)證明 直線(xiàn)l的方程可化為a(2x+y+1)+b(x+y-1)=0,由得 所以直線(xiàn)l恒過(guò)定點(diǎn)(-2,3). (2)解 由(1)知直線(xiàn)l恒過(guò)定點(diǎn)A(-2,3), 當(dāng)直線(xiàn)l垂直于直線(xiàn)PA時(shí),點(diǎn)P到直線(xiàn)l的距離最大. 又直線(xiàn)PA的斜率kPA==, 所以直線(xiàn)l的斜率kl=-5. 故直線(xiàn)l的方程為y-3=-5(x+2), 即5x+y+7=0. [B級(jí) 能力提升訓(xùn)練] 10.若直線(xiàn)l1:y=k(x-4)與直線(xiàn)l2關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),則直線(xiàn)l2恒過(guò)定點(diǎn)( ) A.(0,4) B.(0,2) C.(-2,4) D.(4,-2) B [直線(xiàn)l1:y=k(x-4)恒過(guò)定點(diǎn)(4,0),其關(guān)于點(diǎn)(2,1)對(duì)稱(chēng)的點(diǎn)為(0,2).又由于直線(xiàn)l1:y=k(x-4)與直線(xiàn)l2關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),故直線(xiàn)l2恒過(guò)定點(diǎn)(0,2).] 11.已知?jiǎng)又本€(xiàn)l:ax+by+c-2=0(a>0,c>0)恒過(guò)點(diǎn)P(1,m)且Q(4,0)到動(dòng)直線(xiàn)l的最大距離為3,則+的最小值為( ) A. B. C.1 D.9 B [因?yàn)閯?dòng)直線(xiàn)l:ax+by+c-2=0(a>0,c>0)恒過(guò)點(diǎn)P(1,m),所以a+bm+c-2=0,又因?yàn)镼(4,0)到動(dòng)直線(xiàn)l的最大距離為3,所以=3,解得m=0.所以a+c=2,則+=(a+c)=≥ =,當(dāng)且僅當(dāng)c=2a=時(shí)取等號(hào).] 12.(2018吉林延邊模擬)P點(diǎn)在直線(xiàn)3x+y-5=0上,且P點(diǎn)到直線(xiàn)x-y-1=0的距離為,則P點(diǎn)坐標(biāo)為_(kāi)_________. (1, 2)或(2, -1) [設(shè)P點(diǎn)坐標(biāo)為(x,5-3x),則P點(diǎn)到直線(xiàn)x-y-1=0的距離d===,所以|2x-3|=1,所以x=1或x=2. 所以P點(diǎn)坐標(biāo)為(1, 2)或(2,-1).] 13.已知M(x,y)為曲線(xiàn)C:+=1上任意一點(diǎn),且A(-3,0),B(3,0),則|MA|+|MB|的最大值是__________. 8 [原曲線(xiàn)方程可化為+=1,作圖如下: 由上圖可得要使|MA|+|MB|取得最大值,則M必須在菱形的頂點(diǎn)處,不妨取M(0,),或M(4,0),均可求得|MA|+|MB|=8,故|MA|+|MB|的最大值為8.] 14.已知直線(xiàn)l經(jīng)過(guò)直線(xiàn)2x+y-5=0與x-2y=0的交點(diǎn)P. (1)點(diǎn)A(5,0)到l的距離為3,求l的方程; (2)求點(diǎn)A(5,0)到l的距離的最大值. 解 (1)經(jīng)過(guò)兩已知直線(xiàn)交點(diǎn)的直線(xiàn)系方程為 (2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0, ∴=3,解得λ=2或λ=. ∴l(xiāng)的方程為x=2或4x-3y-5=0. (2)由解得交點(diǎn)P(2,1). 如圖,過(guò)P作任一直線(xiàn)l,設(shè)d為點(diǎn)A到l的距離, 則d≤|PA|(當(dāng)l⊥PA時(shí)等號(hào)成立). ∴dmax=|PA|=. 15.一條光線(xiàn)經(jīng)過(guò)點(diǎn)P(2,3)射在直線(xiàn)l∶x+y+1=0上,反射后經(jīng)過(guò)點(diǎn)Q(1,1),求: (1)入射光線(xiàn)所在直線(xiàn)的方程; (2)這條光線(xiàn)從P到Q所經(jīng)路線(xiàn)的長(zhǎng)度. 解 (1)設(shè)點(diǎn)Q′(x′,y′)為Q關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),QQ′交l于M點(diǎn),∵kl=-1,∴kQQ′=1, ∴QQ′所在直線(xiàn)的方程為y-1=1(x-1),即x-y=0. 由解得 ∴交點(diǎn)M,∴ 解得∴Q′(-2,-2). 設(shè)入射光線(xiàn)與l交于點(diǎn)N,則P,N,Q′三點(diǎn)共線(xiàn), 又P(2,3),Q′(-2,-2), 故入射光線(xiàn)所在直線(xiàn)的方程為 =,即5x-4y+2=0. (2)|PN|+|NQ|=|PN|+|NQ′|=|PQ′| ==, 即這條光線(xiàn)從P到Q所經(jīng)路線(xiàn)的長(zhǎng)度為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 解析幾何 課下層級(jí)訓(xùn)練42 直線(xiàn)的交點(diǎn)坐標(biāo)與距離公式含解析文 新人教A版 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 層級(jí) 訓(xùn)練 42 直線(xiàn) 交點(diǎn) 坐標(biāo) 距離 公式
鏈接地址:http://www.820124.com/p-3913193.html