4、)(k+1)3.12分
令f(k)=-(k-1)(k+1)3,
因?yàn)閒′(k)=-(4k-2)(k+1)2,
所以f(k)在區(qū)間上單調(diào)遞增,上單調(diào)遞減,因此當(dāng)k=時(shí),|PA||PQ|取得最大值. 15分
2.(20xx浙江高考)如圖132,設(shè)橢圓+y2=1(a>1).
圖132
(1)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a,k表示);
(2)若任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值范圍.
[解] (1)設(shè)直線y=kx+1被橢圓截得的線段為AM,
由得(1+a2k2)x2+2a2kx=0, 3分
故x1=0,x2=-
5、.
因此|AM|=|x1-x2|=. 5分
(2)假設(shè)圓與橢圓的公共點(diǎn)有4個(gè),由對(duì)稱(chēng)性可設(shè)y軸左側(cè)的橢圓上有兩個(gè)不同的點(diǎn)P,Q,滿(mǎn)足|AP|=|AQ|. 7分
記直線AP,AQ的斜率分別為k1,k2,且k1,k2>0,k1≠k2.
由(1)知,|AP|=,
|AQ|=,
故=, 9分
所以(k-k)[1+k+k+a2(2-a2)kk]=0.
由于k1≠k2,k1,k2>0得
1+k+k+a2(2-a2)kk=0,
因此=1+a2(a2-2). ①
因?yàn)棰偈疥P(guān)于k1,k2的方程有解的充要條件是
1+a2(a2-2)>1,
所以a>. 1
6、3分
因此,任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn)的充要條件為10. ①
將線
7、段AB中點(diǎn)M代入直線方程y=mx+解得b=-.
②
由①②得m<-或m>. 7分
(2)令t=∈∪,
則|AB|=,
且O到直線AB的距離為d=. 10分
設(shè)△AOB的面積為S(t),所以
S(t)=|AB|d=≤,
當(dāng)且僅當(dāng)t2=時(shí),等號(hào)成立.
故△AOB面積的最大值為. 15分
4.(20xx浙江高考)已知△ABP的三個(gè)頂點(diǎn)都在拋物線C:x2=4y上,F(xiàn)為拋物線C的焦點(diǎn),點(diǎn)M為AB的中點(diǎn),=3.
(1)若|PF|=3,求點(diǎn)M的坐標(biāo);
(2)求△ABP面積的最大值.
圖134
[解] (1)由題意知焦點(diǎn)F(0,1),準(zhǔn)線方程為y
8、=-1. 2分
設(shè)P(x0,y0),由拋物線定義知|PF|=y(tǒng)0+1,得到y(tǒng)0=2,所以P(2,2)或P(-2,2).
由=3得M或M. 6分
(2)設(shè)直線AB的方程為y=kx+m,點(diǎn)A(x1,y1),B(x2,y2),P(x0,y0).
由得x2-4kx-4m=0. 8分
于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB的中點(diǎn)M的坐標(biāo)為(2k,2k2+m).
由=3,得(-x0,1-y0)=3(2k,2k2+m-1),
所以由x=4y0,得k2=-m+. 10分
由Δ>0,k2≥0,得-<m≤.
又因?yàn)閨AB|=4,
點(diǎn)
9、F(0,1)到直線AB的距離為d=,
所以S△ABP=4S△ABF=8|m-1|
= .
記f(m)=3m3-5m2+m+1,
令f′(m)=9m2-10m+1=0,解得m1=,m2=1. 12分
可得f(m)在上是增函數(shù),在上是減函數(shù),在上是增函數(shù).
又f= >f,所以,當(dāng)m=時(shí),f(m)取到最大值,此時(shí)k=.
所以,△ABP面積的最大值為. 15分
(對(duì)應(yīng)學(xué)生用書(shū)第49頁(yè))
熱點(diǎn)題型1 圓錐曲線中的定值問(wèn)題
題型分析:圓錐曲線中的定值問(wèn)題是近幾年高考的熱點(diǎn)內(nèi)容,解決這類(lèi)問(wèn)題的關(guān)鍵是引入變化的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式恒成立,數(shù)式變
10、換等尋找不受參數(shù)影響的量.
【例1】 已知橢圓C:+=1(a>b>0)上一點(diǎn)P與橢圓右焦點(diǎn)的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(均不在坐標(biāo)軸上).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若△AOB的面積為,試判斷直線OA與OB的斜率之積是否為定值? 【導(dǎo)學(xué)號(hào):68334131】
[解] (1)由題意知解得 3分
∴橢圓C的標(biāo)準(zhǔn)方程為+=1. 4分
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),
由得(4k2+3)x2+8kmx+4m2-12=0, 5分
由Δ=(8km)2-16(4k2+3)(m2-3)>0,得m2<4k2
11、+3. 6分
∵x1+x2=,x1x2=,
∴S△OAB=|m||x1-x2|=|m|=, 8分
化簡(jiǎn)得4k2+3-2m2=0,滿(mǎn)足Δ>0,從而有4k2-m2=m2-3(*), 9分
∴kOAkOB===
==-,由(*)式,得=1, 12分
∴kOAkOB=-,即直線OA與OB的斜率之積為定值-. 15分
[方法指津]
求解定值問(wèn)題的兩大途徑
1.→
2.先將式子用動(dòng)點(diǎn)坐標(biāo)或動(dòng)線中的參數(shù)表示,再利用其滿(mǎn)足的約束條件使其絕對(duì)值相等的正負(fù)項(xiàng)抵消或分子、分母約分得定值.
[變式訓(xùn)練1] 已知橢圓C:+=1過(guò)A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程
12、及離心率;
(2)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
[解] (1)由題意得a=2,b=1,
∴橢圓C的方程為+y2=1. 3分
又c==,∴離心率e==. 5分
(2)證明:設(shè)P(x0,y0)(x0<0,y0<0),則x+4y=4. 6分
又A(2,0),B(0,1),∴直線PA的方程為y=(x-2).
令x=0,得yM=-,從而|BM|=1-yM=1+. 9分
直線PB的方程為y=x+1.
令y=0,得xN=-,從而|AN|=2-xN=2+. 12分
∴四邊形ABNM
13、的面積S=|AN||BM|
=
=
==2.
從而四邊形ABNM的面積為定值. 15分
熱點(diǎn)題型2 圓錐曲線中的最值、范圍問(wèn)題
題型分析:圓錐曲線中的最值、范圍問(wèn)題是高考重點(diǎn)考查的內(nèi)容,解決此類(lèi)問(wèn)題常用的方法是幾何法和代數(shù)法.
【例2】 設(shè)圓x2+y2+2x-15=0的圓心為A,直線l過(guò)點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過(guò)B作AC的平行線交AD于點(diǎn)E.
(1)證明|EA|+|EB|為定值,并寫(xiě)出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過(guò)B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.
14、 [解] (1)因?yàn)閨AD|=|AC|,EB∥AC,
所以∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,
故|EA|+|EB|=|EA|+|ED|=|AD|.
又圓A的標(biāo)準(zhǔn)方程為(x+1)2+y2=16,從而|AD|=4,
所以|EA|+|EB|=4. 2分
由題設(shè)得A(-1,0),B(1,0),|AB|=2,
由橢圓定義可得點(diǎn)E的軌跡方程為+=1(y≠0). 4分
(2)當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).
由得(4k2+3)x2-8k2x+4k2-12=0,
則x1+x2=,x1x2=
15、.
所以|MN|=|x1-x2|=.
過(guò)點(diǎn)B(1,0)且與l垂直的直線m:y=-(x-1),點(diǎn)A到直線m的距離為,
6分
所以|PQ|=2=4.
故四邊形MPNQ的面積S=|MN|| PQ|=12. 8分
可得當(dāng)l與x軸不垂直時(shí),四邊形MPNQ面積的取值范圍為(12,8).12分
當(dāng)l與x軸垂直時(shí),其方程為x=1,|MN|=3,|PQ|=8,
故四邊形MPNQ的面積為12.
綜上,四邊形MPNQ面積的取值范圍為[12,8). 15分
[方法指津]
與圓錐曲線有關(guān)的取值范圍問(wèn)題的三種解法
1.?dāng)?shù)形結(jié)合法:利用待求量的幾何意義,確定出極端位置后數(shù)形結(jié)合求
16、解.
2.構(gòu)建不等式法:利用已知或隱含的不等關(guān)系,構(gòu)建以待求量為元的不等式求解.
3.構(gòu)建函數(shù)法:先引入變量構(gòu)建以待求量為因變量的函數(shù),再求其值域.
[變式訓(xùn)練2] (名師押題)已知拋物線C:x2=2py(p>0),過(guò)其焦點(diǎn)作斜率為1的直線l交拋物線C于M,N兩點(diǎn),且|MN|=16.
(1)求拋物線C的方程;
(2)已知?jiǎng)訄AP的圓心在拋物線C上,且過(guò)定點(diǎn)D(0,4),若動(dòng)圓P與x軸交于A,B兩點(diǎn),求+的最大值. 【導(dǎo)學(xué)號(hào):68334132】
[解] (1)設(shè)拋物線的焦點(diǎn)為F,
則直線l:y=x+.
由得x2-2px-p2=0,
∴x1+x2=2p,∴y1+y2=3
17、p,
∴|MN|=y(tǒng)1+y2+p=4p=16,∴p=4,
∴拋物線C的方程為x2=8y. 4分
(2)設(shè)動(dòng)圓圓心P(x0,y0),A(x1,0),B(x2,0),
則x=8y0,且圓P:(x-x0)2+(y-y0)2=x+(y0-4)2,
令y=0,整理得x2-2x0x+x-16=0,
解得x1=x0-4,x2=x0+4, 6分
設(shè)t====,
當(dāng)x0=0時(shí),t=1,?、? 7分
當(dāng)x0≠0時(shí),t=.
∵x0>0,∴x0+≥8,
∴t≥==-1,且t<1,?、?
綜上①②知-1≤t≤1. 11分
∵f(t)=t+在[-1,1]上單調(diào)遞減,
18、
∴+=t+≤-1+=2,
當(dāng)且僅當(dāng)t=-1,即x0=4時(shí)等號(hào)成立.
∴+的最大值為2. 15分
熱點(diǎn)題型3 圓錐曲線中的探索性問(wèn)題
題型分析:探索性問(wèn)題一般分為探究條件和探究結(jié)論兩種類(lèi)型,若探究條件,則可先假設(shè)條件成立,再驗(yàn)證結(jié)論是否成立,成立則存在,否則不存在.若探究結(jié)論,則應(yīng)先寫(xiě)出結(jié)論的表達(dá)式,再針對(duì)表達(dá)式進(jìn)行討論,往往涉及對(duì)參數(shù)的討論.
【例3】 如圖135,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:+=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),D(1,0)為線段OF2的中點(diǎn),且+5=0.
圖135
(1)求橢圓E的方程;
19、
(2)若M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A,B),連接MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連接MD,ND并分別延長(zhǎng)交橢圓E于點(diǎn)P,Q,連接PQ,設(shè)直線MN,PQ的斜率存在且分別為k1,k2.試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.
[解題指導(dǎo)] (1)→→=0→→
(2)→→
→→
→→→
[解] (1)∵+5=0,∴=5,∵a+c=5(a-c),化簡(jiǎn)得2a=3c,又點(diǎn)D(1,0)為線段OF2的中點(diǎn),∴c=2,從而a=3,b=,左焦點(diǎn)F1(-2,0),故橢圓E的方程為+=1. 4分
(2)假設(shè)存在滿(mǎn)足條件的常數(shù)λ,使得k1+λk2
20、=0恒成立,
設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
則直線MD的方程為x=y(tǒng)+1,代入橢圓方程+=1,整理得,y2+y-4=0, 6分
∵y1+y3=,∴y3=,從而x3=,故點(diǎn)P,
同理,點(diǎn)Q. 10分
∵三點(diǎn)M,F(xiàn)1,N共線,∴=,
從而x1y2-x2y1=2(y1-y2),從而k2=====,故k1-=0,從而存在滿(mǎn)足條件的常數(shù)λ,
λ=-. 15分
[方法指津]
探索性問(wèn)題求解的思路及策略
1.思路:先假設(shè)存在,推證滿(mǎn)足條件的結(jié)論,若結(jié)論正確,則存在;若結(jié)論不正確,則不存在.
2.策略:(1)當(dāng)條件和結(jié)論不
21、唯一時(shí)要分類(lèi)討論;(2)當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件.
[變式訓(xùn)練3] 已知橢圓C:+=1(a>b>0)的焦點(diǎn)分別為F1(-,0),F(xiàn)2(,0),點(diǎn)P在橢圓C上,滿(mǎn)足|PF1|=7|PF2|,tan∠F1PF2=4.
(1)求橢圓C的方程;
(2)已知點(diǎn)A(1,0),試探究是否存在直線l:y=kx+m與橢圓C交于D,E兩點(diǎn),且使得|AD|=|AE|?若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【導(dǎo)學(xué)號(hào):68334133】
[解] (1)由|PF1|=7|PF2|,PF1+PF2=2a得PF1=,PF2=. 2分
由余弦定理得cos∠F1P
22、F==,
∴a=2,
∴所求C的方程為+y2=1. 4分
(2)假設(shè)存在直線l滿(mǎn)足題設(shè),設(shè)D(x1,y1),E(x2,y2),將y=kx+m代入+y2=1并整理得(1+4k2)x2+8kmx+4m2-4=0,由Δ=64k2m2-4(1+4k2)(4m2-4)=-16(m2-4k2-1)>0,得4k2+1>m2.① 6分
又x1+x2=-.
設(shè)D,E中點(diǎn)為M(x0,y0),M,kAMk=-1,得m=-,② 10分
將②代入①得4k2+1>2,化簡(jiǎn)得20k4+k2-1>0?(4k2+1)(5k2-1)>0,解得k>或k<-,所以存在直線l,使得|AD|=|AE|,此時(shí)k的取值范圍為∪. 15分