《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題3 突破點(diǎn)7 隨機(jī)變量及其分布 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題3 突破點(diǎn)7 隨機(jī)變量及其分布 Word版含答案(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
突破點(diǎn)7 隨機(jī)變量及其分布
(對應(yīng)學(xué)生用書第26頁)
[核心知識提煉]
提煉1離散型隨機(jī)變量的分布列
離散型隨機(jī)變量X的分布列如下:
X
x1
x2
x3
…
xi
…
xn
P
p1
p2
p3
…
pi
…
pn
則(1)pi≥0.
(2)p1+p2+…+pi+…+pn=1(i=1,2,3,…,n).
(3)E(X)=x1p1+x2p2+…+xipi+…+xnpn為X的均值或數(shù)學(xué)期望(簡稱期望).
D(X)=(x1-E(
2、X))2p1+(x2-E(X))2p2+…+(xi-E(X))2pi+…+(xn-E(X))2pn叫做隨機(jī)變量X的方差.
(4)均值與方差的性質(zhì)
①E(aX+b)=aE(X)+b;
②D(aX+b)=a2D(X)(a,b為實(shí)數(shù)).
(5) 兩點(diǎn)分布與二項(xiàng)分布的均值、方差
①若X服從兩點(diǎn)分布,則E(X)=p,D(X)=p(1-p);
②若X~B(n,p),則E(X)=np,D(X)=np(1-p).
提煉2幾種常見概率的計算
(1)相互獨(dú)立事件同時發(fā)生的概率
P(AB)=P(A)P(B).
(2)獨(dú)立重復(fù)試驗(yàn)的概率
如果事件A在一次試驗(yàn)中發(fā)生的概率是p
3、,那么它在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率為Pn(k)=Cpk(1-p)n-k,k=0,1,2,…,n.
[高考真題回訪]
回訪1 離散型隨機(jī)變量及其分布列
1.(20xx浙江高考)設(shè)袋子中裝有a個紅球,b個黃球,c個藍(lán)球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機(jī)會均等)2個球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和,求ξ的分布列;
(2)從該袋子中任取(每球取到的機(jī)會均等)1個球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若Eη=,Dη=,求a∶b∶c. 【導(dǎo)學(xué)號:68334087】
4、
[解] (1)由題意得ξ=2,3,4,5,6.
故P(ξ=2)==, 1分
P(ξ=3)==, 2分
P(ξ=4)==, 3分
P(ξ=5)==, 4分
P(ξ=6)==. 5分
所以ξ的分布列為
ξ
2
3
5
5
6
P
6分
(2)由題意知η的分布列為
η
1
2
3
P
所以E(η)=++=, 10分
D(η)=2+2+2=,
化簡得 13分
解得a=3c,b=2c,故a∶b∶c=3∶2∶1. 15分
回 訪2 離散型隨機(jī)變量的均值與方差
2.(20xx浙江高考)已
5、知隨機(jī)變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0D(ξ2)
C.E(ξ1)>E(ξ2),D(ξ1)E(ξ2),D(ξ1)>D(ξ2)
A [由題意可知ξi(i=1,2)服從兩點(diǎn)分布,
∴E(ξ1)=p1,E(ξ2)=p2,D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2).
又∵0
6、<ξ2<知,D(ξ1)p2,E(ξ1)E(ξ2)
C.p1>p2,E(ξ1)>E(ξ2)
D.p1
7、2的分布列如下:
ξ1
1
2
P
ξ2
1
2
3
P
所以E(ξ1)=+=,
E(ξ2)=++=,
所以E(ξ1)0,所以p1>p2.]
4.(20xx浙江高考)隨機(jī)變量ξ的取值為0,1,2.若P(ξ=0)=,E(ξ)=1,則D(ξ)=________.
[設(shè)P(ξ=1)=a,P(ξ=2)=b,
則解得
所以D(ξ)=+0+1=.]
(對應(yīng)學(xué)生用書第27頁)
熱點(diǎn)題型1 相互獨(dú)立事件的概率
題型分析:高考主要考查相互獨(dú)立事件概率的
8、求解及實(shí)際應(yīng)用,對事件相互獨(dú)立性的考查相對較頻繁,難度中等.
【例1】 (1)投籃測試中,每人投3次,至少投中2次才能通過測試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過測試的概率為( )
A.0.648 B.0.432
C.0.36 D.0.312
(2)如圖71,由M到N的電路中有4個元件,分別標(biāo)為T1,T2,T3,T4,電流能通過T1,T2,T3的概率都是p,電流能通過T4的概率是0.9.電流能否通過各元件相互獨(dú)立.已知T1,T2,T3中至少有一個能通過電流的概率為0.999.
圖71
①求p;
②求電流能在
9、M與N之間通過的概率.
(1)A [3次投籃投中2次的概率為P(k=2)=C0.62(1-0.6),投中3次的概率為P(k=3)=0.63,所以通過測試的概率為P(k=2)+P(k=3)=C0.62(1-0.6)+0.63=0.648.故選A.]
(2)記Ai表示事件:電流能通過Ti,i=1,2,3,4,A表示事件:T1,T2,T3中至少有一個能通過電流,
B表示事件:電流能在M與N之間通過.
①=123,1,2,3相互獨(dú)立, 2分
P()=P(123)
=P(1)P(2)P(3)=(1-p)3. 3分
又P()=1-P(A)=1-0.999=0.001, 4分
10、
故(1-p)3=0.001,p=0.9. 6分
②B=A4∪4A1A3∪41A2A3, 10分
P(B)=P(A4∪4A1A3∪41A2A3)
=P(A4)+P(4A1A3)+P(41A2A3)
=P(A4)+P(4)P(A1)P(A3)+P(4)P(1)P(A2)P(A3)
=0.9+0.10.90.9+0.10.10.90.9
=0.989 1. 15分
[方法指津]
求相互獨(dú)立事件和獨(dú)立重復(fù)試驗(yàn)的概率的方法
(1)直接法:正確分析復(fù)雜事件的構(gòu)成,將復(fù)雜事件轉(zhuǎn)化為幾個彼此互斥的事件的和事件或幾個相互獨(dú)立事件同時發(fā)生的積事件或獨(dú)立重復(fù)試驗(yàn)問題,然
11、后用相應(yīng)概率公式求解.
(2)間接法:當(dāng)復(fù)雜事件正面情況比較多,反面情況較少,則可利用其對立事件進(jìn)行求解.對于“至少”“至多”等問題往往也用這種方法求解.
[變式訓(xùn)練1] (20xx杭州學(xué)軍中學(xué)高三模擬)商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機(jī)摸出1個球.在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,則顧客抽獎1次能獲獎的概率是________;若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,則E(X)=________.
【
12、導(dǎo)學(xué)號:68334089】
[由題得,在甲箱中抽中紅球、白球的概率分別為,,在乙箱中抽中紅球、白球的概率分別為,.抽獎一次不獲獎的概率為=,所以其(對立事件)獲獎的概率為1-=.因?yàn)槊看潍@得一等獎的概率為=,3次抽獎相互獨(dú)立,故E(X)=np=3=.]
熱點(diǎn)題型2 離散型隨機(jī)變量的分布列、期望和方差
題型分析:離散型隨機(jī)變量的分布列問題是高考的熱點(diǎn),常以實(shí)際生活為背景,涉及事件的相互獨(dú)立性、互斥事件的概率等,綜合性強(qiáng),難度中等.
【例2】 (1)(20xx蕭山中學(xué)高三仿真考試)隨機(jī)變量X的分布列如下表,且E(X)=2,則D(2X-3)=( )
X
0
2
a
P
13、
p1
A.1 B.2 C.4 D.5
C [由題可得+p1+=1,解得p1=.所以E(X)=0+2+a=2,解得a=3.所以D(X)=(0-2)2+(2-2)2+(3-2)2=1,所以D(2X-3)=4D(X)=4,故選C.]
(2)(20xx紹興市方向性仿真考試)設(shè)X是離散型隨機(jī)變量,P(X=x1)=,P(X=x2)=,且x1<x2,若E(X)=,D(X)=,則x1+x2=( )
A. B.
C. D.3
D [由已知得解得或因?yàn)閤1<x2,所以
所以x1+x2=1+2=3,故選D.]
[方法指津]
解答離散型隨機(jī)變量的分
14、布列及相關(guān)問題的一般思路:
(1)明確隨機(jī)變量可能取哪些值.
(2)結(jié)合事件特點(diǎn)選取恰當(dāng)?shù)挠嬎惴椒?,計算這些可能取值的概率值.
(3)根據(jù)分布列和期望、方差公式求解.
提醒:明確離散型隨機(jī)變量的取值及事件間的相互關(guān)系是求解此類問題的關(guān)鍵.
[變式訓(xùn)練2] (1)(20xx溫州九校協(xié)作體高三期末聯(lián)考)將四位同學(xué)等可能地分到甲、乙、丙三個班級,則甲班級至少有一位同學(xué)的概率是________,用隨機(jī)變量ξ表示分到丙班級的人數(shù),則Eξ=________. 【導(dǎo)學(xué)號:68334090】
[甲班級沒有分到同學(xué)的概率為=,所以甲班級至少有一位同學(xué)的概率為1-=.隨機(jī)變量ξ的可能取值為0,1,2,3,4,則P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,于是Eξ=0+1+2+3+4=.]
(2)(20xx金華十校高考模擬考試)設(shè)隨機(jī)變量X的分布列為
X
1
2
3
P
a
則a=________;E(X)=________.
[由分布列的概念易得++a=1,解得a=,則E(X)=1+2+3=.]