高三文科數(shù)學(xué)通用版二輪復(fù)習(xí):第1部分 專題3 突破點(diǎn)8 回歸分析、獨(dú)立性檢驗(yàn) Word版含解析
《高三文科數(shù)學(xué)通用版二輪復(fù)習(xí):第1部分 專題3 突破點(diǎn)8 回歸分析、獨(dú)立性檢驗(yàn) Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高三文科數(shù)學(xué)通用版二輪復(fù)習(xí):第1部分 專題3 突破點(diǎn)8 回歸分析、獨(dú)立性檢驗(yàn) Word版含解析(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 突破點(diǎn)8 回歸分析、獨(dú)立性檢驗(yàn) 提煉1 變量的相關(guān)性 (1)正相關(guān):在散點(diǎn)圖中,點(diǎn)散布在從左下角到右上角的區(qū)域. (2)負(fù)相關(guān):在散點(diǎn)圖中,點(diǎn)散布在從左上角到右下角的區(qū)域. (3)相關(guān)系數(shù)r:當(dāng)r>0時(shí),兩變量正相關(guān);當(dāng)r<0時(shí),兩變量負(fù)相關(guān);當(dāng)|r|≤1且|r|越接近于1,相關(guān)程度越高,當(dāng)|r|≤1且|r|越接近于0,相關(guān)程度越低. 提煉2 線性回歸方程 方程=x+稱為線性回歸方程,其中=,=-.(,)稱為樣本中心點(diǎn). 提煉3 獨(dú)立性檢驗(yàn) (1)確定分類變量
2、,獲取樣本頻數(shù),得到列聯(lián)表. (2)求觀測值:k=. (3)根據(jù)臨界值表,作出正確判斷.如果k≥kα,就推斷“X與Y有關(guān)系”,這種推斷犯錯(cuò)誤的概率不超過α,否則就認(rèn)為在犯錯(cuò)誤的概率不超過α的前提下不能推斷“X與Y有關(guān)系”. 回訪1 變量的相關(guān)性 1.(20xx·全國卷Ⅱ)根據(jù)下面給出的2004年至我國二氧化硫年排放量(單位:萬噸)柱形圖,以下結(jié)論中不正確的是( ) 圖81 A.逐年比較,減少二氧化硫排放量的效果最顯著 B.我國治理二氧化硫排放顯現(xiàn)成效 C.以來我國二氧化硫年排放量呈減少趨勢 D.以來我國二氧化硫年排放量與年份正相關(guān) D 對于A
3、選項(xiàng),由圖知從到二氧化硫排放量下降得最多,故A正確.對于B選項(xiàng),由圖知,由到矩形高度明顯下降,因此B正確.對于C選項(xiàng),由圖知從以后除稍有上升外,其余年份都是逐年下降的,所以C正確.由圖知以來我國二氧化硫年排放量與年份負(fù)相關(guān),故選D.] 2.(20xx·全國卷)在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線y=x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為( ) A.-1 B.0 C. D.1 D 樣本點(diǎn)都在直線上時(shí),其數(shù)據(jù)的估計(jì)值與真實(shí)值是相
4、等的,即yi=i,代入相關(guān)系數(shù)公式r==1.] 3.(20xx·全國卷Ⅰ)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值. 圖82 (xi-)2 (wi-)2 (xi-)(yi-) (wi-)(yi-) 46.6 563 6.8 289.8 1.6 1 469 108.8 表中wi=,w]=wi. (1)根據(jù)散點(diǎn)圖判斷,y=a+bx
5、與y=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由) (2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程; (3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題: ①年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少? ②年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大? 附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為=,=-. 解] (1)由散點(diǎn)圖可以判斷,y=c+d適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型.2分 (
6、2)令w=,先建立y關(guān)于w的線性回歸方程. 由于===68, =- =563-68×6.8=100.6,4分 所以y關(guān)于w的線性回歸方程為=100.6+68w, 因此y關(guān)于x的回歸方程為=100.6+68.6分 (3)①由(2)知,當(dāng)x=49時(shí), 年銷售量y的預(yù)報(bào)值=100.6+68=576.6, 年利潤z的預(yù)報(bào)值=576.6×0.2-49=66.32.8分 ②根據(jù)(2)的結(jié)果知,年利潤z的預(yù)報(bào)值 =0.2(100.6+68)-x=-x+13.6+20.12.10分 所以當(dāng)==6.8,即x=46.24時(shí),取得最大值. 故年宣傳費(fèi)為46.24千元時(shí),年利
7、潤的預(yù)報(bào)值最大.12分 回訪2 獨(dú)立性檢驗(yàn) 4.(20xx·遼寧高考)電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖: 圖83 將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”. 根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)? 非體育迷 體育迷 合計(jì) 男 女 10 55 合計(jì) 解] 由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2
8、215;2列聯(lián)表如下: 非體育迷 體育迷 合計(jì) 男 30 15 45 女 45 10 55 合計(jì) 75 25 100 4分 將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得 k===≈3.030.因?yàn)?.030<3.841,所以沒有理由認(rèn)為“體育迷”與性別有關(guān).10分 熱點(diǎn)題型1 回歸分析 題型分析:高考命題常以實(shí)際生活為背景,重在考查回歸分析中散點(diǎn)圖的作用、回歸方程的求法和應(yīng)用,難度中等. 在一次抽樣調(diào)查中測得樣本的5組數(shù)據(jù),得到一個(gè)變量y關(guān)于x的回歸方程模型,其對應(yīng)的數(shù)值如下表: x 0.25 0.5 1 2 4 y
9、 16 12 5 2 1 (1)試作出散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷,y=a+bx與y=+m哪一個(gè)適宜作為變量y關(guān)于x的回歸方程模型?(給出判斷即可,不必說明理由) (2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立變量y關(guān)于x的回歸方程; (3)根據(jù)(2)中所求的變量y關(guān)于x的回歸方程預(yù)測:當(dāng)x=3時(shí),對應(yīng)的y值為多少?(保留四位有效數(shù)字) 解] (1)作出變量y與x之間的散點(diǎn)圖,如圖所示, 2分 由圖可知變量y與x近似地呈反比例函數(shù)關(guān)系, 那么y=+m適宜作為變量y關(guān)于x的回歸方程模型.4分 (2)由(1)知y=+m適宜作為變量y關(guān)于x的回歸方程模型,令t=,則y=kt+m
10、,由y與x的數(shù)據(jù)表可得y與t的數(shù)據(jù)表如下: t 4 2 1 0.5 0.25 y 16 12 5 2 1 ……………6分 作出y與t的散點(diǎn)圖,如圖所示. 8分 由圖可知y與t近似地呈線性相關(guān)關(guān)系. 又=1.55,=7.2,iyi=94.25,=21.312 5, 所以k==≈4.134 4,m=-k=7.2-4.134 4×1.55≈0.8, 所以y=4.134 4t+0.8, 所以y關(guān)于x的回歸方程為y=+0.8.10分 (3)由(2)得y關(guān)于x的回歸方程是y=+0.8, 當(dāng)x=3時(shí),可得y=+0.8≈2.178.12分 1.
11、正確理解計(jì)算,的公式和準(zhǔn)確的計(jì)算,是求線性回歸方程的關(guān)鍵.其中線性回歸方程必過樣本中心點(diǎn)(,). 2.在分析兩個(gè)變量的相關(guān)關(guān)系時(shí),可根據(jù)樣本數(shù)據(jù)作出散點(diǎn)圖來確定兩個(gè)變量之間是否具有相關(guān)關(guān)系,若具有線性相關(guān)關(guān)系,則可通過線性回歸方程估計(jì)和預(yù)測變量的值. 變式訓(xùn)練1] (20xx·石家莊二模)為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價(jià)格y(單位:千元/噸)和年利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表: x 1 2 3 4 5 y 7.0 6.5 5.5 3.8 2.2 (1)求y關(guān)于x的線性回歸方程=x+; (2)若每噸該農(nóng)產(chǎn)品的成本為
12、2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤z取到最大值?(保留兩位小數(shù)) 參考公式:==,=-. 解] (1)=3,=5,2分 i=15,i=25,iyi=62.7,=55, 解得=-1.23,=8.69,4分 所以=8.69-1.23x.6分 (2)年利潤z=x(8.69-1.23x)-2x=-1.23x2+6.69x,10分 所以當(dāng)x=2.72,即年產(chǎn)量為2.72噸時(shí),年利潤z取得最大值.12分 熱點(diǎn)題型2 獨(dú)立性檢驗(yàn) 題型分析:盡管全國卷Ⅰ在近幾年未在該點(diǎn)命題,但其極易與分層抽樣、古典概型等知識交匯,是潛在的命題點(diǎn)之一,須引起足夠的重視. (20x
13、x·河南省名校期中)微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下: 微信控 非微信控 總計(jì) 男性 26 24 50 女性 30 20 50 總計(jì) 56 44 100 (1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與“性別”有關(guān)? (2)現(xiàn)從調(diào)查的女性用戶中按分
14、層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù); (3)從(2)中抽取的5人中再隨機(jī)抽取2人贈送200元的護(hù)膚品套裝,求這2人中至少有1人為“非微信控”的概率. 參考公式:K2=,其中n=a+b+c+d. 參考數(shù)據(jù): P(K2≥k0) 0.50 0.40 0.25 0.05 0.025 0.010 k0 0.455 0.708 1.323 3.841 5.024 6.635 解題指導(dǎo)] 計(jì)算k下結(jié)論求“微信控”及“非微信控”人數(shù)求得概率. 解] (1)由列聯(lián)表可得k==≈0.649 35<0.708,2分 所以沒
15、有60%的把握認(rèn)為“微信控”與“性別”有關(guān).3分 (2)依題意可知,所抽取的5位女性中, “微信控”有5×=3(人),“非微信控”有5×=2(人).5分 (3)記5人中的“微信控”為a,b,c,“非微信控”為D,E, 則所有可能的基本事件為(a,b),(a,c),(a,D),(a,E),(b,c),(b,D),(b,E),(c,D),(c,E),(D,E),共10種,8分 其中至少有1人為“非微信控”的基本事件有(a,D),(a,E),(b,D),(b,E),(c,D),(c,E),(D,E),共7種,10分 所以這2人中至少有1人為“非微信控”的概率為.12分
16、 求解獨(dú)立性檢驗(yàn)問題時(shí)要注意:一是2×2列聯(lián)表中的數(shù)據(jù)與公式中各個(gè)字母的對應(yīng),不能混淆;二是注意計(jì)算得到k之后的結(jié)論. 變式訓(xùn)練2] 某高校共有學(xué)生15 000人,其中男生10 500人,女生4 500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)). (1)應(yīng)收集多少位女生的樣本數(shù)據(jù)? (2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均
17、體育運(yùn)動時(shí)間超過4小時(shí)的概率; (3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時(shí)間超過4小時(shí),請完成每周平均體育運(yùn)動時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時(shí)間與性別有關(guān)”. 附:K2=, P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 解] (1)300×=90,所以應(yīng)收集90位女生的樣本數(shù)據(jù).2分 (2)由頻率分布直方圖得1-2×(0.100+0.025)=0.75,所以該校學(xué)生每周平均體育運(yùn)動時(shí)間超過4小時(shí)的概率的估計(jì)值為0.75.
18、5分 (3)由(2)知,300位學(xué)生中有300×0.75=225人的每周平均體育運(yùn)動時(shí)間超過4小時(shí),75人的每周平均體育運(yùn)動時(shí)間不超過4小時(shí).又因?yàn)闃颖緮?shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的,所以每周平均體育運(yùn)動時(shí)間與性別列聯(lián)表如下: 每周平均體育運(yùn)動時(shí)間與性別列聯(lián)表: 男生 女生 總計(jì) 每周平均體育運(yùn)動時(shí)間不超過4小時(shí) 45 30 75 每周平均體育運(yùn)動時(shí)間超過4小時(shí) 165 60 225 總計(jì) 210 90 300 8分 結(jié)合列聯(lián)表可算得k==≈4.762>3.841.10分 所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時(shí)間與性別有關(guān)”.12分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。