影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程

上傳人:仙*** 文檔編號(hào):40260442 上傳時(shí)間:2021-11-15 格式:DOC 頁(yè)數(shù):7 大?。?08.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程_第1頁(yè)
第1頁(yè) / 共7頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程_第2頁(yè)
第2頁(yè) / 共7頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí) 第七章 直線和圓的方程(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 高中數(shù)學(xué)第七章-直線和圓的方程 考試內(nèi)容: 數(shù)學(xué)探索版權(quán)所有直線的傾斜角和斜率,直線方程的點(diǎn)斜式和兩點(diǎn)式.直線方程的一般式. 數(shù)學(xué)探索版權(quán)所有兩條直線平行與垂直的條件.兩條直線的交角.點(diǎn)到直線的距離. 數(shù)學(xué)探索版權(quán)所有用二元一次不等式表示平面區(qū)域.簡(jiǎn)單的線性規(guī)劃問(wèn)題. 數(shù)學(xué)探索版權(quán)所有曲線與方程的概念.由已知條件列出曲線方程. 數(shù)學(xué)探索版權(quán)所有圓的標(biāo)準(zhǔn)方程和一般方程.圓的參數(shù)方程. 數(shù)學(xué)探索版權(quán)所有考試要求: 數(shù)學(xué)探索版權(quán)所有(1)理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的

2、直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程. 數(shù)學(xué)探索版權(quán)所有(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系. 數(shù)學(xué)探索版權(quán)所有(3)了解二元一次不等式表示平面區(qū)域. 數(shù)學(xué)探索版權(quán)所有(4)了解線性規(guī)劃的意義,并會(huì)簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)探索版權(quán)所有(5)了解解析幾何的基本思想,了解坐標(biāo)法. 數(shù)學(xué)探索版權(quán)所有(6)掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念。理解圓的參數(shù)方程. 07. 直線和圓的方程 知識(shí)要點(diǎn) 一、直線方程. 1. 直線的傾斜角:一條直線向上的方向與軸正方

3、向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是. 注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在. ②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確定. 2. 直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式. 特別地,當(dāng)直線經(jīng)過(guò)兩點(diǎn),即直線在軸,軸上的截距分別為時(shí),直線方程是:. 注:若是一直線的方程,則這條直線的方程是,但若則不是這條線. 附:直線系:對(duì)于直線的斜截式方程,當(dāng)均為確定的數(shù)值時(shí),它表示一條確定的直線,如果變化時(shí),對(duì)應(yīng)的直線也會(huì)變化.

4、①當(dāng)為定植,變化時(shí),它們表示過(guò)定點(diǎn)(0,)的直線束.②當(dāng)為定值,變化時(shí),它們表示一組平行直線. 3. ⑴兩條直線平行: ∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的錯(cuò)誤. (一般的結(jié)論是:對(duì)于兩條直線,它們?cè)谳S上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且) 推論:如果兩條直線的傾斜角為則∥. ⑵兩條直線垂直: 兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜

5、率不存在. (即是垂直的充要條件) 4. 直線的交角: ⑴直線到的角(方向角);直線到的角,是指直線繞交點(diǎn)依逆時(shí)針?lè)较蛐D(zhuǎn)到與重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是,當(dāng)時(shí). ⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個(gè)角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有. 5. 過(guò)兩直線的交點(diǎn)的直線系方程為參數(shù),不包括在內(nèi)) 6. 點(diǎn)到直線的距離: ⑴點(diǎn)到直線的距離公式:設(shè)點(diǎn),直線到的距離為,則有. 注: 1. 兩點(diǎn)P1(x1,y1)、P2(x2,y2)的距離公式:. 特例:點(diǎn)P(x,y)到原點(diǎn)O的距離: 2. 定比分點(diǎn)坐標(biāo)分式。若點(diǎn)P(x,y)分有向

6、線段,其中P1(x1,y1),P2(x2,y2).則 特例,中點(diǎn)坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。 3. 直線的傾斜角(0≤<180)、斜率: 4. 過(guò)兩點(diǎn). 當(dāng)(即直線和x軸垂直)時(shí),直線的傾斜角=,沒(méi)有斜率 ⑵兩條平行線間的距離公式:設(shè)兩條平行直線,它們之間的距離為,則有. 注;直線系方程 1. 與直線:Ax+By+C= 0平行的直線系方程是:Ax+By+m=0.( m?R, C≠m). 2. 與直線:Ax+By+C= 0垂直的直線系方程是:Bx-Ay+m=0.( m?R) 3. 過(guò)定點(diǎn)(x1,y1)的直線系方程是: A(x-x1)+B(y-y1)=0

7、 (A,B不全為0) 4. 過(guò)直線l1、l2交點(diǎn)的直線系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:該直線系不含l2. 7. 關(guān)于點(diǎn)對(duì)稱和關(guān)于某直線對(duì)稱: ⑴關(guān)于點(diǎn)對(duì)稱的兩條直線一定是平行直線,且這個(gè)點(diǎn)到兩直線的距離相等. ⑵關(guān)于某直線對(duì)稱的兩條直線性質(zhì):若兩條直線平行,則對(duì)稱直線也平行,且兩直線到對(duì)稱直線距離相等. 若兩條直線不平行,則對(duì)稱直線必過(guò)兩條直線的交點(diǎn),且對(duì)稱直線為兩直線夾角的角平分線. ⑶點(diǎn)關(guān)于某一條直線對(duì)稱,用中點(diǎn)表示兩對(duì)稱點(diǎn),則中點(diǎn)在對(duì)稱直線上(方程①),過(guò)兩對(duì)稱點(diǎn)的直線方程與對(duì)稱直線方程垂直(方程②)①②可解得所求

8、對(duì)稱點(diǎn). 注:①曲線、直線關(guān)于一直線()對(duì)稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關(guān)于直線y=x–2對(duì)稱曲線方程是f(y+2 ,x –2)=0. ②曲線C: f(x ,y)=0關(guān)于點(diǎn)(a ,b)的對(duì)稱曲線方程是f(a – x, 2b – y)=0. 二、圓的方程. 1. ⑴曲線與方程:在直角坐標(biāo)系中,如果某曲線上的 與一個(gè)二元方程的實(shí)數(shù)建立了如下關(guān)系: ①曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解. ②以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn). 那么這個(gè)方程叫做曲線方程;這條曲線叫做方程的曲線(圖形). ⑵曲線和方程的關(guān)系,實(shí)質(zhì)上是曲線上任一點(diǎn)其坐標(biāo)與方程的一種關(guān)系,曲線

9、上任一點(diǎn)是方程的解;反過(guò)來(lái),滿足方程的解所對(duì)應(yīng)的點(diǎn)是曲線上的點(diǎn). 注:如果曲線C的方程是f(x ,y)=0,那么點(diǎn)P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0 2. 圓的標(biāo)準(zhǔn)方程:以點(diǎn)為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是. 特例:圓心在坐標(biāo)原點(diǎn),半徑為的圓的方程是:. 注:特殊圓的方程:①與軸相切的圓方程 ②與軸相切的圓方程 ③與軸軸都相切的圓方程 3. 圓的一般方程: . 當(dāng)時(shí),方程表示一個(gè)圓,其中圓心,半徑. 當(dāng)時(shí),方程表示一個(gè)點(diǎn). 當(dāng)時(shí),方程無(wú)圖形(稱虛圓). 注:①圓的參數(shù)方程:(為參數(shù)). ②方程表示圓的充要條件

10、是:且且. ③圓的直徑或方程:已知(用向量可征). 4. 點(diǎn)和圓的位置關(guān)系:給定點(diǎn)及圓. ①在圓內(nèi) ②在圓上 ③在圓外 5. 直線和圓的位置關(guān)系: 設(shè)圓圓:; 直線:; 圓心到直線的距離. ①時(shí),與相切; 附:若兩圓相切,則相減為公切線方程. ②時(shí),與相交; 附:公共弦方程:設(shè) 有兩個(gè)交點(diǎn),則其公共弦方程為. ③時(shí),與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則: 與相切; 與相交; 與相離. 注:若兩圓為同心圓則,相減,不表示直線. 6.

11、圓的切線方程:圓的斜率為的切線方程是過(guò)圓 上一點(diǎn)的切線方程為:. ①一般方程若點(diǎn)(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過(guò)圓上一點(diǎn)的切線方程為. ②若點(diǎn)(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程. 7. 求切點(diǎn)弦方程:方法是構(gòu)造圖,則切點(diǎn)弦方程即轉(zhuǎn)化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…② …③,所以BC的方程即③代②,①②相切即為所求. 三、曲線和方程 1.曲線與方程:在直角坐標(biāo)系中,如果曲線C和方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系: 1) 曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解(純粹性); 2) 方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。 2.求曲線方程的方法:. 1)直接法:建系設(shè)點(diǎn),列式表標(biāo),簡(jiǎn)化檢驗(yàn); 2)參數(shù)法; 3)定義法, 4)待定系數(shù)法.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!