高考數(shù)學(xué)理科一輪【學(xué)案39】數(shù)學(xué)歸納法含答案
《高考數(shù)學(xué)理科一輪【學(xué)案39】數(shù)學(xué)歸納法含答案》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理科一輪【學(xué)案39】數(shù)學(xué)歸納法含答案(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 學(xué)案39 數(shù)學(xué)歸納法 導(dǎo)學(xué)目標(biāo): 1.了解數(shù)學(xué)歸納法的原理.2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題. 自主梳理 1.歸納法 由一系列有限的特殊事例得出________的推理方法叫歸納法.根據(jù)推理過程中考查的對象是涉及事物的全體或部分可分為____歸納法和________歸納法. 2.?dāng)?shù)學(xué)歸納法 設(shè){Pn}是一個與正整數(shù)相關(guān)的命題集合,如果:(1)證明起始命題________(或________)成立;(2)在假設(shè)______成立的前提下,推出________也成立,那
2、么可以斷定{Pn}對一切正整數(shù)成立. 3.?dāng)?shù)學(xué)歸納法證題的步驟 (1)(歸納奠基)證明當(dāng)n取第一個值__________時命題成立. (2)(歸納遞推)假設(shè)______________________________時命題成立,證明當(dāng)________時命題也成立.只要完成這兩個步驟,就可以斷定命題對從n0開始的所有正整數(shù)n都成立. 自我檢測 1.用數(shù)學(xué)歸納法證明:“1+a+a2+…+an+1= (a≠1)”在驗證n=1時,左端計算所得的項為( ) A.1 B.1+a C.1+a+a2 D.1+a+a2+a3 2.如果命題P(n)對于n=k (k∈N*)時成
3、立,則它對n=k+2也成立,又若P(n)對于n=2時成立,則下列結(jié)論正確的是( )
A.P(n)對所有正整數(shù)n成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n成立
D.P(n)對所有大于1的正整數(shù)n成立
3.(20xx臺州月考)證明<1++++…+
4、3+(n+2)3 (n∈N*)能被9整除”,要利用歸納假設(shè)證n=k+1時的情況,只需展開( ) A.(k+3)3 B.(k+2)3 C.(k+1)3 D.(k+1)3+(k+2)3 探究點(diǎn)一 用數(shù)學(xué)歸納法證明等式 例1 對于n∈N*,用數(shù)學(xué)歸納法證明: 1n+2(n-1)+3(n-2)+…+(n-1)2+n1=n(n+1)(n+2). 變式遷移1 (20xx金華月考)用數(shù)學(xué)歸納法證明: 對任意的n∈N*,1-+-+…+-=++…+. 探究點(diǎn)二 用數(shù)學(xué)歸納法證明不等式 例2 用數(shù)學(xué)歸納
5、法證明:對一切大于1的自然數(shù),不等式…>均成立. 變式遷移2 已知m為正整數(shù),用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx. 探究點(diǎn)三 用數(shù)學(xué)歸納法證明整除問題 例3 用數(shù)學(xué)歸納法證明:當(dāng)n∈N*時,an+1+(a+1)2n-1能被a2+a+1整除. 變式遷移3 用數(shù)學(xué)歸納法證明:當(dāng)n為正整數(shù)時,f(n)=32n+2-8n-9能被64整除. 從特殊到一般的思想 例 (14分)已知等差數(shù)列{an}的公差d大于
6、0,且a2、a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項和為Tn,且Tn=1-bn. (1)求數(shù)列{an}、{bn}的通項公式; (2)設(shè)數(shù)列{an}的前n項和為Sn,試比較與Sn+1的大小,并說明理由. 【答題模板】 解 (1)由已知得,又∵{an}的公差大于0, ∴a5>a2,∴a2=3,a5=9.∴d===2,a1=1, ∴an=1+(n-1)2=2n-1.[2分] ∵Tn=1-bn,∴b1=,當(dāng)n≥2時,Tn-1=1-bn-1, ∴bn=Tn-Tn-1=1-bn-, 化簡,得bn=bn-1,[4分] ∴{bn}是首項為,公比為的等比數(shù)列, 即bn=
7、n-1=,
∴an=2n-1,bn=.[6分]
(2)∵Sn=n=n2,∴Sn+1=(n+1)2,=.
以下比較與Sn+1的大小:
當(dāng)n=1時,=,S2=4,∴
8、1)+1,∴n=k+1時,>Sn+1也成立.[12分]
由①②可知n∈N*,n≥4時,>Sn+1都成立.
綜上所述,當(dāng)n=1,2,3時,
9、的驗證不可省略,有時要取兩個(或兩個以上)初始值進(jìn)行驗證;初始值的驗證是歸納假設(shè)的基礎(chǔ). 2.在進(jìn)行n=k+1命題證明時,一定要用n=k時的命題,沒有用到該命題而推理證明的方法不是數(shù)學(xué)歸納法. 1.?dāng)?shù)學(xué)歸納法:先證明當(dāng)n取第一個值n0時命題成立,然后假設(shè)當(dāng)n=k (k∈N*,k≥n0)時命題成立,并證明當(dāng)n=k+1時命題也成立,那么就證明了這個命題成立.這是因為第一步首先證明了n取第一個值n0時,命題成立,這樣假設(shè)就有了存在的基礎(chǔ),至少k=n0時命題成立,由假設(shè)合理推證出n=k+1時命題也成立,這實質(zhì)上是證明了一種循環(huán),如驗證了n0=1成立,又證明了n=k+1也成立,這就一定有n=2成
10、立,n=2成立,則n=3成立,n=3成立,則n=4也成立,如此反復(fù)以至無窮,對所有n≥n0的整數(shù)就都成立了. 2.(1)第①步驗證n=n0使命題成立時n0不一定是1,是使命題成立的最小正整數(shù). (2)第②步證明n=k+1時命題也成立的過程中一定要用到歸納遞推,否則就不是數(shù)學(xué)歸納法. (滿分:75分) 一、選擇題(每小題5分,共25分) 1.用數(shù)學(xué)歸納法證明命題“當(dāng)n是正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的證法是( ) A.假設(shè)n=k(k∈N*)時命題成立,證明n=k+1命題成立 B.假設(shè)n=k(k是正奇數(shù))時命題成立,證明n=k+1命題成立 C.假
11、設(shè)n=2k+1 (k∈N*)時命題成立,證明n=k+1命題成立 D.假設(shè)n=k(k是正奇數(shù))時命題成立,證明n=k+2命題成立 2.已知f(n)=+++…+,則( ) A.f(n)中共有n項,當(dāng)n=2時,f(2)=+ B.f(n)中共有n+1項,當(dāng)n=2時,f(2)=++ C.f(n)中共有n2-n項,當(dāng)n=2時,f(2)=+ D.f(n)中共有n2-n+1項,當(dāng)n=2時,f(2)=++ 3.如果命題P(n)對n=k成立,則它對n=k+1也成立,現(xiàn)已知P(n)對n=4不成立,則下列結(jié)論正確的是( ) A.P(n)對n∈N*成立 B.P(n)對n>4且n∈N*成立 C.P
12、(n)對n<4且n∈N*成立
D.P(n)對n≤4且n∈N*不成立
4.(20xx日照模擬)用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
5.(20xx湛江月考)已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是( )
A.若f(3)≥9成立,且對于任意的k≥1,均有f(k)≥k2成立
B.若f(4)≥16成立,則對于任意的k≥4,均有f(k) 13、2成立
C.若f(7)≥49成立,則對于任意的k<7,均有f(k) 14、__.
三、解答題(共38分)
9.(12分)用數(shù)學(xué)歸納法證明1+≤1+++…+≤+n (n∈N*).
10.(12分)(20xx新鄉(xiāng)月考)數(shù)列{an}滿足an>0,Sn=(an+),求S1,S2,猜想Sn,并用數(shù)學(xué)歸納法證明.
11.(14分)(20xx鄭州月考)已知函數(shù)f(x)=e-(其中e為自然對數(shù)的底數(shù)).
(1)判斷f(x)的奇偶性;
(2)在(-∞,0)上求函數(shù)f(x)的極值;
(3)用數(shù)學(xué)歸納法證明:當(dāng)x>0時,對任意正整數(shù)n都有f() 15、學(xué)歸納法
自主梳理
1.一般結(jié)論 完全 不完全 2.(1)P1 P0 (2)Pk Pk+1
3.(1)n0 (n0∈N*) (2)n=k (k≥n0,k∈N*) n=k+1
自我檢測
1.C [當(dāng)n=1時左端有n+2項,∴左端=1+a+a2.]
2.B [由n=2成立,根據(jù)遞推關(guān)系“P(n)對于n=k時成立,則它對n=k+2也成立”,可以推出n=4時成立,再推出n=6時成立,…,依次類推,P(n)對所有正偶數(shù)n成立”.]
3.D [當(dāng)n=2時,中間的式子
1+++=1+++.]
4.C [當(dāng)n=1時,21=12+1;
當(dāng)n=2時,22<22+1;當(dāng)n=3時,23<32+1; 16、
當(dāng)n=4時,24<42+1.而當(dāng)n=5時,25>52+1,∴n0=5.]
5.A [假設(shè)當(dāng)n=k時,原式能被9整除,
即k3+(k+1)3+(k+2)3能被9整除.
當(dāng)n=k+1時,(k+1)3+(k+2)3+(k+3)3為了能用上面的歸納假設(shè),只需將(k+3)3展開,讓其出現(xiàn)k3即可.]
課堂活動區(qū)
例1 解題導(dǎo)引 用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的一些等式命題,關(guān)鍵在于弄清等式兩邊的構(gòu)成規(guī)律:等式的兩邊各有多少項,由n=k到n=k+1時,等式的兩邊會增加多少項,增加怎樣的項.
證明 設(shè)f(n)=1n+2(n-1)+3(n-2)+…+(n-1)2+n1.
(1)當(dāng)n=1時,左邊 17、=1,右邊=1,等式成立;
(2)假設(shè)當(dāng)n=k (k≥1且k∈N*)時等式成立,
即1k+2(k-1)+3(k-2)+…+(k-1)2+k1
=k(k+1)(k+2),
則當(dāng)n=k+1時,
f(k+1)=1(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-1]2+(k+1)1
=f(k)+1+2+3+…+k+(k+1)
=k(k+1)(k+2)+(k+1)(k+1+1)
=(k+1)(k+2)(k+3).
由(1)(2)可知當(dāng)n∈N*時等式都成立.
變式遷移1 證明 (1)當(dāng)n=1時,
左邊=1-===右邊,
∴等式成立.
(2)假設(shè)當(dāng)n=k 18、(k≥1,k∈N*)時,等式成立,即
1-+-+…+-
=++…+.
則當(dāng)n=k+1時,
1-+-+…+-+-
=++…++-
=++…+++
=++…+++,
即當(dāng)n=k+1時,等式也成立,
所以由(1)(2)知對任意的n∈N*等式都成立.
例2 解題導(dǎo)引 用數(shù)學(xué)歸納法證明不等式問題時,從n=k到n=k+1的推證過程中,證明不等式的常用方法有比較法、分析法、綜合法、放縮法等.
證明 (1)當(dāng)n=2時,左邊=1+=;右邊=.
∵左邊>右邊,∴不等式成立.
(2)假設(shè)當(dāng)n=k (k≥2,且k∈N*)時不等式成立,
即…>.
則當(dāng)n=k+1時,
…
>==
>= 19、=.
∴當(dāng)n=k+1時,不等式也成立.
由(1)(2)知,對于一切大于1的自然數(shù)n,不等式都成立.
變式遷移2 證明 (1)當(dāng)m=1時,原不等式成立;
當(dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,
因為x2≥0,所以左邊≥右邊,原不等式成立;
(2)假設(shè)當(dāng)m=k(k≥2,k∈N*)時,不等式成立,
即(1+x)k≥1+kx,則當(dāng)m=k+1時,
∵x>-1,∴1+x>0.
于是在不等式(1+x)k≥1+kx兩邊同時乘以1+x得,
(1+x)k(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2
≥1+(k+1)x.
所以(1+x)k+1≥1+(k+1)x,
20、
即當(dāng)m=k+1時,不等式也成立.
綜合(1)(2)知,對一切正整數(shù)m,不等式都成立.
例3 解題導(dǎo)引 用數(shù)學(xué)歸納法證明整除問題,由k過渡到k+1時常使用“配湊法”.在證明n=k+1成立時,先將n=k+1時的原式進(jìn)行分拆、重組或者添加項等方式進(jìn)行整理,最終將其變成一個或多個部分的和,其中每個部分都能被約定的數(shù)(或式子)整除,從而由部分的整除性得出整體的整除性,最終證得n=k+1時也成立.
證明 (1)當(dāng)n=1時,a2+(a+1)=a2+a+1能被a2+a+1整除.
(2)假設(shè)當(dāng)n=k (k≥1且k∈N*)時,
ak+1+(a+1)2k-1能被a2+a+1整除,
則當(dāng)n=k+1時,
21、
ak+2+(a+1)2k+1=aak+1+(a+1)2(a+1)2k-1
=aak+1+a(a+1)2k-1+(a2+a+1)(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假設(shè)可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,
∴ak+2+(a+1)2k+1也能被a2+a+1整除,
即n=k+1時命題也成立.
綜合(1)(2)知,對任意的n∈N*命題都成立.
變式遷移3 證明 (1)當(dāng)n=1時,f(1)=34-8-9=64,
命題顯然成立.
(2)假設(shè)當(dāng)n=k (k≥1,k∈N*)時,
f(k)=32k+2-8 22、k-9能被64整除.
則當(dāng)n=k+1時,
32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1)
即f(k+1)=9f(k)+64(k+1)
∴n=k+1時命題也成立.
綜合(1)(2)可知,對任意的n∈N*,命題都成立.
課后練習(xí)區(qū)
1.D [A、B、C中,k+1不一定表示奇數(shù),只有D中k為奇數(shù),k+2為奇數(shù).]
2.D
3.D [由題意可知,P(n)對n=3不成立(否則P(n)對n=4也成立).同理可推P(n)對n=2,n=1也不成立.]
4.D [∵當(dāng)n=k時,左端=1+2+3+…+ 23、k2,
當(dāng)n=k+1時,
左端=1+2+3+…+k2+(k2+1)+…+(k+1)2,
∴當(dāng)n=k+1時,左端應(yīng)在n=k的基礎(chǔ)上加上
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.]
5.D [f(4)=25>42,∴k≥4,均有f(k)≥k2.
僅有D選項符合題意.]
6.2k+1
解析 ∵當(dāng)n=k+1時,
左邊=1+2+…+k+(k+1)+k+…+2+1,
∴從n=k到n=k+1時,應(yīng)添加的代數(shù)式為(k+1)+k=2k+1.
7.
解析 不等式的左邊增加的式子是
+-=.
8.n-1
解析 ∵f(4)=f(3)+2,f(5)=f(4)+3,
f 24、(6)=f(5)+4,…,∴f(n+1)=f(n)+n-1.
9.證明 (1)當(dāng)n=1時,左邊=1+,右邊=+1,
∴≤1+≤,命題成立.(2分)
當(dāng)n=2時,左邊=1+=2;右邊=+2=,
∴2<1+++<,命題成立.(4分)
(2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時命題成立,
即1+<1+++…+<+k,(6分)
則當(dāng)n=k+1時,
1+++…++++…+>1++2k=1+.(8分)
又1+++…++++…+<+k+2k=+(k+1),
即n=k+1時,命題也成立.(10分)
由(1)(2)可知,命題對所有n∈N*都成立.(12分)
10.解 ∵an>0,∴Sn>0 25、,
由S1=(a1+),變形整理得S=1,
取正根得S1=1.
由S2=(a2+)及a2=S2-S1=S2-1得
S2=(S2-1+),
變形整理得S=2,取正根得S2=.
同理可求得S3=.由此猜想Sn=.(4分)
用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n=1時,上面已求出S1=1,結(jié)論成立.
(6分)
(2)假設(shè)當(dāng)n=k時,結(jié)論成立,即Sk=.
那么,當(dāng)n=k+1時,
Sk+1=(ak+1+)=(Sk+1-Sk+)
=(Sk+1-+).
整理得S=k+1,取正根得Sk+1=.
故當(dāng)n=k+1時,結(jié)論成立.(11分)
由(1)、(2)可知,對一切n∈N*,Sn=都成 26、立.
(12分)
11.(1)解 ∵函數(shù)f(x)定義域為{x∈R|x≠0}
且f(-x)===f(x),
∴f(x)是偶函數(shù).(4分)
(2)解 當(dāng)x<0時,f(x)=,
f′(x)=+ (-)
=-(2x+1),(6分)
令f′(x)=0有x=-,
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x
(-∞,-)
-
(-,0)
f′(x)
+
0
-
f(x)
增
極大值
減
由表可知:當(dāng)x=-時,f(x)取極大值4e-2,
無極小值.(8分)
(3)證明 當(dāng)x>0時f(x)=,∴f()=x2e-x.
考慮到:x>0時,不等式f() 27、!x2-n等價于x2e-x
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。