影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題??肌⒅仉y點(diǎn)題型講練

上傳人:lil****n07 文檔編號(hào):40444611 上傳時(shí)間:2021-11-15 格式:DOC 頁(yè)數(shù):14 大?。?38KB
收藏 版權(quán)申訴 舉報(bào) 下載
中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題???、重難點(diǎn)題型講練_第1頁(yè)
第1頁(yè) / 共14頁(yè)
中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題??肌⒅仉y點(diǎn)題型講練_第2頁(yè)
第2頁(yè) / 共14頁(yè)
中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題???、重難點(diǎn)題型講練_第3頁(yè)
第3頁(yè) / 共14頁(yè)

下載文檔到電腦,查找使用更方便

23 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題???、重難點(diǎn)題型講練》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考(數(shù)學(xué))分類七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題(含答案)-歷年真題常考、重難點(diǎn)題型講練(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、數(shù)學(xué)專題 精心整理 類型七 二次函數(shù)與直角三角形有關(guān)的問(wèn)題 【典例1】如圖,拋物線與軸交于,兩點(diǎn). (1)若過(guò)點(diǎn)的直線是拋物線的對(duì)稱軸. ①求拋物線的解析式; ②對(duì)稱軸上是否存在一點(diǎn),使點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好落在對(duì)稱軸上.若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. (2) 當(dāng),時(shí),函數(shù)值的最大值滿足,求的取值范圍. 【答案】(1)①;②存在,或;(2). 【解析】 【分析】 (1)①根據(jù)拋物線的對(duì)稱軸公式即可求出解析式; ②如圖1,若點(diǎn)P在x軸上方,點(diǎn)B關(guān)于OP對(duì)稱的點(diǎn)在對(duì)稱軸上,連接、PB,根據(jù)軸對(duì)稱得到,,求出點(diǎn)B的坐標(biāo),勾股定理得到,再根據(jù),列出方程解答,

2、同理得到點(diǎn)P在x軸下方時(shí)的坐標(biāo)即可; (2)當(dāng)時(shí),確定對(duì)稱軸的位置,再結(jié)合開(kāi)口方向,確定當(dāng)時(shí),函數(shù)的增減性,從而得到當(dāng)x=2時(shí),函數(shù)取最大值,再列出不等式解答即可. 【詳解】 解:(1)①拋物線的對(duì)稱軸為直線, ∴若過(guò)點(diǎn)的直線是拋物線的對(duì)稱軸, 則,解得:b=4, ∴; ②存在, 如圖1,若點(diǎn)P在x軸上方,點(diǎn)B關(guān)于OP對(duì)稱的點(diǎn)在對(duì)稱軸上,連接、PB, 則,, 對(duì)于,令y=0,則, 解得:, ∴A(-1,0),B(5,0), ∴, ∴, ∴, 設(shè)點(diǎn)P(2,m), 由可得:,解得:, ∴, 同理,當(dāng)點(diǎn)P在x軸下方時(shí),, 綜上所述,點(diǎn)或 (2)∵拋物線的

3、對(duì)稱軸為直線, ∴當(dāng)時(shí),, ∵拋物線開(kāi)口向下,在對(duì)稱軸左邊,y隨x的增大而增大, ∴當(dāng)時(shí),取x=2,y有最大值, 即, ∴,解得:, 又∵, ∴. 【點(diǎn)睛】 本題考查了二次函數(shù)的綜合應(yīng)用,涉及了二次函數(shù)的圖象與性質(zhì),以及勾股定理的應(yīng)用,其中第(1)②問(wèn)要先畫(huà)出圖形再理解,第(2)問(wèn)運(yùn)用到了二次函數(shù)的增減性,難度不大,解題的關(guān)鍵是熟記二次函數(shù)的圖象與性質(zhì). 【典例2】如圖,二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)A(-1,0),B(4,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,其對(duì)稱軸與線段BC交于點(diǎn)E.垂直于x軸的動(dòng)直線l分別交拋物線和線段BC于點(diǎn)P和點(diǎn)F,動(dòng)直線l在拋

4、物線的對(duì)稱軸的右側(cè)(不含對(duì)稱軸)沿x軸正方向移動(dòng)到B點(diǎn). (1)求出二次函數(shù)y=ax2+bx+4和BC所在直線的表達(dá)式; (2)在動(dòng)直線l移動(dòng)的過(guò)程中,試求使四邊形DEFP為平行四邊形的點(diǎn)P的坐標(biāo); (3)連接CP,CD,在移動(dòng)直線l移動(dòng)的過(guò)程中,拋物線上是否存在點(diǎn)P,使得以點(diǎn)P,C,F(xiàn)為頂點(diǎn)的三角形與DCE相似,如果存在,求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由. 【答案】(1)y=-x2+3x+4,y=-x+4;(2);(3)存在, 【解析】 【分析】 (1)運(yùn)用待定系數(shù)法,利用A,B兩點(diǎn)的坐標(biāo)構(gòu)建二元一次方程組求解二次函數(shù)的表達(dá)式,利用B,C兩點(diǎn)的坐標(biāo)確定直線BC的表達(dá)式

5、; (2)先求得DE的長(zhǎng),根據(jù)平行四邊形的性質(zhì)得到PF=DE,點(diǎn)P與點(diǎn)F的橫坐標(biāo)相同,故利用拋物線與直線的解析式表示它們的縱坐標(biāo),根據(jù)其差等于DE長(zhǎng)構(gòu)建一元二次方程求解; (3)結(jié)合圖形與已知條件,易于發(fā)現(xiàn)若兩三角形相似,只可能存在△PCF∽△CDE一種情況.△CDE的三邊均可求,(2)中已表示PF的長(zhǎng),再構(gòu)建直角三角形或借助兩點(diǎn)間距離公式,利用勾股定理表示出CF的長(zhǎng),這樣根據(jù)比例式列方程求解,從而可判斷點(diǎn)P是否存在,以及求解點(diǎn)P的值. 【詳解】 (1)由題意,將A(-1.0),B(4.0)代入,得 ,解得, ∴二次函數(shù)的表達(dá)式為, 當(dāng)時(shí),y=4, ∴點(diǎn)C的坐標(biāo)為(0,4),又

6、點(diǎn)B的坐標(biāo)為(4,0), 設(shè)線段BC所在直線的表達(dá)式為, ∴,解得, ∴BC所在直線的表達(dá)式為; (2)∵DE⊥x軸,PF⊥x軸, ∴DE∥PF, 只要DE=PF,此時(shí)四邊形DEFP即為平行四邊形. 由二次函數(shù)y=-+3+4=(-) 2+,得D的坐標(biāo)為(,), 將代入,即y=-+4=,得點(diǎn)E的坐標(biāo)為(,), ∴DE=-=, 設(shè)點(diǎn)P的橫坐標(biāo)為t,則P(t,-t2+3t+4),F(xiàn)(t,-t+4), PF=-t2+3t+4-(-t+4)=-t2+4t, 由DE=PF,得-t2+4t=, 解之,得t1= (不合題意,舍去),t2=, 當(dāng)t=時(shí),-t2+3t+4=-()2+3

7、+4=, ∴P的坐標(biāo)為(,); (3)由(2)知,PF∥DE, ∴∠CED=∠CFP, 又∠PCF與∠DCE有共同的頂點(diǎn)C,且∠PCF在∠DCE的內(nèi)部, ∴∠PCF≠∠DCE, ∴只有當(dāng)∠PCF=∠CDE時(shí),△PCF∽△CDE, 由D (,),C(0,4),E(,),利用勾股定理,可得 CE=,DE=, 由(2)以及勾股定理知,PF=-t2+4t,F(xiàn)(t,-t+4), CF=, ∵△PCF∽△CDE, ∴,即, ∵t≠0, ∴()=3, ∴t=, 當(dāng)t=時(shí),-t2+3t+4=-()2+3+4=. ∴點(diǎn)P的坐標(biāo)是(,). 【點(diǎn)睛】 本題屬于二次函數(shù)綜合題

8、,考查了一次函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),勾股定理的應(yīng)用等知識(shí),解題的關(guān)鍵是,學(xué)會(huì)用數(shù)形結(jié)合的思想思考問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題. 【典例3】如圖,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).直線與拋物線交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為. (1)請(qǐng)直接寫(xiě)出,兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式; (2)若點(diǎn)是拋物線上的點(diǎn),點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)作軸,垂足為.與直線交于點(diǎn),當(dāng)點(diǎn)是線段的三等分點(diǎn)時(shí),求點(diǎn)的坐標(biāo); (3)若點(diǎn)是軸上的點(diǎn),且,求點(diǎn)的坐標(biāo). 【答案】(1),,直線的函數(shù)表達(dá)式為:;(2)當(dāng)點(diǎn)是

9、線段的三等分點(diǎn)時(shí),點(diǎn)的坐標(biāo)為或;(3)點(diǎn)的坐標(biāo)為或. 【解析】 【分析】 (1)令可得兩點(diǎn)的坐標(biāo),把的坐標(biāo)代入一次函數(shù)解析式可得的解析式; (2)根據(jù)題意畫(huà)出圖形,分別表示三點(diǎn)的坐標(biāo),求解的長(zhǎng)度,分兩種情況討論即可得到答案; (3)根據(jù)題意畫(huà)出圖形,分情況討論:①如圖,當(dāng)點(diǎn)在軸正半軸上時(shí),記為點(diǎn).過(guò)點(diǎn)作直線,垂足為.再利用相似三角形與等腰直角三角形的性質(zhì),結(jié)合勾股定理可得答案,②如圖,當(dāng)點(diǎn)在軸負(fù)半軸上時(shí),記為點(diǎn).過(guò)點(diǎn)作直線,垂足為,再利用相似三角形與等腰直角三角形的性質(zhì),結(jié)合勾股定理可得答案. 【詳解】 解:(1)令 ,, 設(shè)直線的函數(shù)表達(dá)式為:, 把代

10、入得: 解得: 直線的函數(shù)表達(dá)式為:. (2)解:如圖,根據(jù)題意可知,點(diǎn)與點(diǎn)的坐標(biāo)分別為 ,. , , 分兩種情況: ①當(dāng)時(shí),得. 解得:,(舍去) 當(dāng)時(shí),. 點(diǎn)的坐標(biāo)為 ②當(dāng)時(shí),得. 解得:,(舍去) 當(dāng)時(shí), 點(diǎn)的坐標(biāo)為. 當(dāng)點(diǎn)是線段的三等分點(diǎn)時(shí),點(diǎn)的坐標(biāo)為或 (3)解:直線與軸交于點(diǎn), 點(diǎn)坐標(biāo)為. 分兩種情況: ①如圖,當(dāng)點(diǎn)在軸正半軸上時(shí),記為點(diǎn). 過(guò)點(diǎn)作直線,垂足為.則, , . 即 . 又,, . 連接,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為, 軸 . ,. . . 點(diǎn)的坐標(biāo)為. ②如圖,當(dāng)點(diǎn)在軸負(fù)半軸上

11、時(shí),記為點(diǎn).過(guò)點(diǎn)作直線,垂足為, 則, ,. . 即 . 又,, .. 由①可知,.. . . 點(diǎn)的坐標(biāo)為 點(diǎn)的坐標(biāo)為或. 【點(diǎn)睛】 本題考查的是二次函數(shù)與軸的交點(diǎn)坐標(biāo),利用待定系數(shù)法求一次函數(shù)的解析式,平面直角坐標(biāo)系中線段的長(zhǎng)度的計(jì)算,同時(shí)考查了相似三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),勾股定理的應(yīng)用,特別是分類討論的數(shù)學(xué)思想,掌握以上知識(shí)是解題的關(guān)鍵. 【典例4】如圖1,排球場(chǎng)長(zhǎng)為18m,寬為9m,網(wǎng)高為2.24m.隊(duì)員站在底線O點(diǎn)處發(fā)球,球從點(diǎn)O的正上方1.9m的C點(diǎn)發(fā)出,運(yùn)動(dòng)路線是拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),高度為2.88m.即

12、BA=2.88m.這時(shí)水平距離OB=7m,以直線OB為x軸,直線OC為y軸,建立平面直角坐標(biāo)系,如圖2. (1)若球向正前方運(yùn)動(dòng)(即x軸垂直于底線),求球運(yùn)動(dòng)的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式(不必寫(xiě)出x取值范圍).并判斷這次發(fā)球能否過(guò)網(wǎng)?是否出界?說(shuō)明理由; (2)若球過(guò)網(wǎng)后的落點(diǎn)是對(duì)方場(chǎng)地①號(hào)位內(nèi)的點(diǎn)P(如圖1,點(diǎn)P距底線1m,邊線0.5m),問(wèn)發(fā)球點(diǎn)O在底線上的哪個(gè)位置?(參考數(shù)據(jù):取1.4) 【答案】(1)這次發(fā)球過(guò)網(wǎng),但是出界了,理由詳見(jiàn)解析;(2)發(fā)球點(diǎn)O在底線上且距右邊線0.1米處. 【解析】 【分析】 (1)求出拋物線表達(dá)式,再確定x=9和x=

13、18時(shí),對(duì)應(yīng)函數(shù)的值即可求解; (2)當(dāng)y=0時(shí),y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6=8.4,即可求解. 【詳解】 (1)設(shè)拋物線的表達(dá)式為:y=a(x﹣7)2+2.88, 將x=0,y=1.9代入上式并解得:a=﹣, 故拋物線的表達(dá)式為:y=﹣(x﹣7)2+2.88; 當(dāng)x=9時(shí),y=﹣(x﹣7)2+2.88=2.8>2.24, 當(dāng)x=18時(shí),y=﹣(x﹣7)2+2.88=0.64>0, 故這次發(fā)球過(guò)網(wǎng),但是出界了; (2)如圖,分別過(guò)點(diǎn)作底線、邊線的平行線PQ、OQ交于點(diǎn)Q, 在Rt△OPQ中,OQ=18﹣1=17, 當(dāng)y=0時(shí),y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5), ∴OP=19,而OQ=17, 故PQ=6=8.4, ∵9﹣8.4﹣0.5=0.1, ∴發(fā)球點(diǎn)O在底線上且距右邊線0.1米處. 【點(diǎn)睛】 此題考查求二次函數(shù)的解析式,利用自變量求對(duì)應(yīng)的函數(shù)值的計(jì)算,勾股定理解直角三角形,二次函數(shù)的實(shí)際應(yīng)用,正確理解題意,明確“能否過(guò)網(wǎng)”,“是否出界”詞語(yǔ)的含義找到解題的方向是解答此題的關(guān)鍵. 初中數(shù)學(xué)中考備課必備

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!