影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版

上傳人:仙*** 文檔編號:41728898 上傳時間:2021-11-23 格式:DOC 頁數(shù):8 大?。?75.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版_第1頁
第1頁 / 共8頁
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版_第2頁
第2頁 / 共8頁
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第6章 不等式、推理與證明 第3節(jié) 二元一次不等式組與簡單的線性規(guī)劃問題學(xué)案 文 北師大版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三節(jié) 二元一次不等式(組)與簡單的線性規(guī)劃問題 [考綱傳真] 1.會從實際情境中抽象出二元一次不等式組.2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.3.會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決. (對應(yīng)學(xué)生用書第83頁) [基礎(chǔ)知識填充] 1.二元一次不等式(組)表示的平面區(qū)域 不等式 表示區(qū)域 Ax+By+C>0 直線Ax+By+C=0某一側(cè)的所有點組成的平面區(qū)域 不包括邊界直線 Ax+By+C≥0 包括邊界直線 不等式組 各個不等式所表示平面區(qū)域的公共部分 2. 線性規(guī)劃中的相關(guān)概念 名稱

2、 意義 線性約束條件 由x,y的一次不等式(或方程)組成的不等式組 目標(biāo)函數(shù) 關(guān)于x,y的解析式 線性目標(biāo)函數(shù) 關(guān)于x,y的一次解析式 可行解 滿足線性約束條件的解(x,y) 可行域 所有可行解組成的集合 最優(yōu)解 使目標(biāo)函數(shù)取得最大值或最小值的可行解 線性規(guī)劃問題 求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題 [知識拓展] 確定二元一次不等式表示的平面區(qū)域的位置 把二元一次不等式Ax+By+C>0(<0)表示為y>kx+b或y<kx+b的形式.若y>kx+b,則平面區(qū)域為直線Ax+By+C=0的上方,若y<kx+b,則平面區(qū)域為直線Ax+By+C=

3、0的下方. [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)不等式Ax+By+C>0表示的平面區(qū)域一定在直線Ax+By+C=0的上方.(  ) (2)線性目標(biāo)函數(shù)的最優(yōu)解可能不唯一.(  ) (3)目標(biāo)函數(shù)z=ax+by(b≠0)中,z的幾何意義是直線ax+by-z=0在y軸上的截距.(  ) (4)不等式x2-y2<0表示的平面區(qū)域是一、三象限角的平分線和二、四象限角的平分線圍成的含有y軸的兩塊區(qū)域.(  ) [答案] (1)× (2)√ (3)× (4)√ 2.(教材改編)不

4、等式組表示的平面區(qū)域是(  ) C [x-3y+6<0表示直線x-3y+6=0左上方的平面區(qū)域,x-y+2≥0表示直線x-y+2=0及其右下方的平面區(qū)域,故選C.] 3.(20xx·全國卷Ⅰ)設(shè)x,y滿足約束條件則z=x+y的最大值為 (  ) A.0     B.1     C.2     D.3 D [根據(jù)題意作出可行域,如圖陰影部分所示,由z=x+y 得y=-x+z. 作出直線y=-x,并平移該直線, 當(dāng)直線y=-x+z過點A時,目標(biāo)函數(shù)取得最大值. 由圖知A(3,0), 故zmax=3+0=3. 故選D.] 4.(2

5、0xx·保定調(diào)研)在平面直角坐標(biāo)系xOy中,若點P(m,1)到直線4x-3y-1=0的距離為4,且點P(m,1)在不等式2x+y≥3表示的平面區(qū)域內(nèi),則m=__________. 【導(dǎo)學(xué)號:00090190】 6 [由題意得=4及2m+1≥3, 解得m=6.] 5.在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積是__________. 1 [不等式組表示的區(qū)域如圖中的陰影部分所示, 由x=1,x+y=0得A(1,-1), 由x=1,x-y-4=0得B(1,-3), 由x+y=0,x-y-4=0得C(2,-2), ∴|AB|=2,∴S△ABC=×

6、;2×1=1.] (對應(yīng)學(xué)生用書第84頁) 二元一次不等式(組)表示的平面區(qū)域  (1)(20xx·浙江高考)若平面區(qū)域夾在兩條斜率為1的平行直線之間,則這兩條平行直線間的距離的最小值是(  ) A.     B.     C.     D. (2)(20xx·衡水中學(xué)調(diào)研)若不等式組表示的平面區(qū)域是一個三角形,則a的取值范圍是(  ) A.a(chǎn)<5 B.a(chǎn)≥7 C.5≤a<7 D.a(chǎn)<5或a≥7 (1)B (2)C [(1)根據(jù)約束條件作出可行域如圖陰影部分,當(dāng)斜率為1的直線分別過A點和B點時滿足條件

7、,聯(lián)立方程組求得A(1,2),聯(lián)立方程組求得B(2,1),可求得分別過A,B點且斜率為1的兩條直線方程為x-y+1=0和x-y-1=0,由兩平行線間的距離公式得距離為=,故選B. (2)如圖,當(dāng)直線y=a位于直線y=5和y=7之間(不含y=7)時滿足條件,故選C.] [規(guī)律方法] 1.可用“直線定界、特殊點定域”的方法判定二元一次不等式表示的平面區(qū)域,若直線不過原點,特殊點常選取原點. 2.不等式組表示的平面區(qū)域是各個不等式所表示的平面區(qū)域的交集,畫出圖形后,面積關(guān)系結(jié)合平面幾何知識求解. [變式訓(xùn)練1] (1)不等式組表示的平面區(qū)域的面積為__________.

8、 【導(dǎo)學(xué)號:00090191】 (2)(20xx·濰坊模擬)已知關(guān)于x,y的不等式組所表示的平面區(qū)域的面積為3,則實數(shù)k的值為________. (1)4 (2) [(1)不等式組表示的平面區(qū)域為如圖所示的陰影部分. 由得 ∴A(0,2),B(2,0),C(8,-2). 直線x+2y-4=0與x軸的交點D的坐標(biāo)為(4,0). 因此S△ABC=S△ABD+S△BCD=×2×2+×2×2=4. (2)直線kx-y+2=0恒過點(0,2),不等式組表示的平面區(qū)域如圖所示, 則A(2,2k+2),B(2

9、,0),C(0,2),由題意知 ×2×(2k+2)=3,解得k=.] 簡單的線性規(guī)劃問題 角度1 求線性目標(biāo)函數(shù)的最值  (1)(20xx·全國卷Ⅱ)設(shè)x,y滿足約束條件則z=2x+y的最小值是(  ) A.-15 B.-9 C.1 D.9 (2)(20xx·福州質(zhì)檢)已知實數(shù)x,y滿足且數(shù)列4x,z,2y為等差數(shù)列,則實數(shù)z的最大值是__________. 【導(dǎo)學(xué)號:00090192】 (1)A (2)3 [(1)不等式組表示的平面區(qū)域如圖中陰影部分所示. 將目標(biāo)函數(shù)z=2x+y化為y=-2x+z,作出直線y

10、=-2x并平移,當(dāng)直線y=-2x+z經(jīng)過點A(-6,-3)時,z取最小值,且zmin=2×(-6)-3=-15. 故選A. (2)在平面直角坐標(biāo)系內(nèi)畫出題中的不等式組表示的平面區(qū)域為以,,(1,1)為頂點的三角形區(qū)域(包含邊界),又由題意易得z=2x+y,所以當(dāng)目標(biāo)函數(shù)z=2x+y經(jīng)過平面區(qū)域內(nèi)的點(1,1)時,z=2x+y取得最大值zmax=2×1+1=3.] 角度2 求非線性目標(biāo)函數(shù)的最值  (1)(20xx·山東高考)若變量x,y滿足則x2+y2的最大值是 (  ) 【導(dǎo)學(xué)號:0009019

11、3】 A.4 B.9 C.10 D.12 (2)(20xx·湖北七市4月聯(lián)考)若變量x,y滿足約束條件則z=的取值范圍是__________. (1)C (2) [(1)作出不等式組表示的平面區(qū)域,如圖中陰影部分所示.x2+y2表示平面區(qū)域內(nèi)的點到原點距離的平方,由得A(3,-1),由圖易得(x2+y2)max=|OA|2=32+(-1)2=10.故選C. (2)作出不等式組所表示的區(qū)域,如圖中△ABC所表示的區(qū)域(含邊界),其中點A(1,1),B(-1,-1),C.z=表示△ABC區(qū)域內(nèi)的點與點M(2,0)的連線的斜率,顯然kMA≤z≤kMB,即≤z≤,化簡

12、得-1≤z≤.] 角度3 線性規(guī)劃中的參數(shù)問題  (20xx·河北石家莊質(zhì)檢)已知x,y滿足約束條件若目標(biāo)函數(shù)z=y(tǒng)-mx(m>0)的最大值為1,則m的值是(  ) A.- B.1 C.2 D.5 B [作出可行域,如圖所示的陰影部分. ∵m>0,∴當(dāng)z=y(tǒng)-mx經(jīng)過點A時,z取最大值,由解得即A(1,2),∴2-m=1,解得m=1.故選B.] [規(guī)律方法] 1.求目標(biāo)函數(shù)的最值的一般步驟為:一作圖、二平移、三求值.其關(guān)鍵是準(zhǔn)確作出可行域,理解目標(biāo)函數(shù)的意義. 2.常見的目標(biāo)函數(shù)有: (1)截距型:形如z=ax+by.求這類目

13、標(biāo)函數(shù)的最值時常將函數(shù)z=ax+by轉(zhuǎn)化為直線的斜截式:y=-x+,通過求直線的截距的最值間接求出z的最值. (2)距離型:形如z=(x-a)2+(y-b)2. (3)斜率型:形如z=. 易錯警示:注意轉(zhuǎn)化的等價性及幾何意義. 線性規(guī)劃的實際應(yīng)用  (20xx·天津高考)某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:   原料 肥料   A B C 甲 4 8 3 乙 5 5 10 現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)

14、甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù). (1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域; (2)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤. [解] (1)由已知,x,y滿足的數(shù)學(xué)關(guān)系式為 該二元一次不等式組所表示的平面區(qū)域為圖①中的陰影部分. 5分 (2)設(shè)利潤為z萬元,則目標(biāo)函數(shù)為z=2x+3y. 考慮z=2x+3y,將它變形為y=-x+,它的圖像是斜率為-,隨z變化的一族平行直線,為直線在y軸上的截距,當(dāng)

15、取最大值時,z的值最大.根據(jù)x,y滿足的約束條件,由圖②可知,當(dāng)直線z=2x+3y經(jīng)過可行域上的點M時,截距最大,即z最大. 7分 解方程組得點M的坐標(biāo)為(20,24), 所以zmax=2×20+3×24=112. 答:生產(chǎn)甲種肥料20車皮,乙種肥料24車皮時利潤最大,且最大利潤為112萬元. 12分 [規(guī)律方法] 1.解線性規(guī)劃應(yīng)用題的步驟 (1)轉(zhuǎn)化——設(shè)元,寫出約束條件和目標(biāo)函數(shù),從而將實際問題轉(zhuǎn)化為線性規(guī)劃問題; (2)求解——解這個純數(shù)學(xué)的線性規(guī)劃問題; (3)作答——將數(shù)學(xué)問題的答案還原為實際問題的答案. 2.解線性規(guī)劃應(yīng)

16、用題,可先找出各變量之間的關(guān)系,最好列成表格,然后用字母表示變量,列出線性約束條件;寫出要研究的函數(shù),轉(zhuǎn)化成線性規(guī)劃問題. [變式訓(xùn)練2] (20xx·全國卷Ⅰ)某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時.生產(chǎn)一件產(chǎn)品A的利潤為2 100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________元. 216 000 [設(shè)生產(chǎn)產(chǎn)品A為x件,產(chǎn)品B為y件,則 目標(biāo)函數(shù)z=2 100x+900y. 作出可行域為圖中的陰影部分(包括邊界)內(nèi)的整數(shù)點,圖中陰影四邊形的頂點坐標(biāo)分別為(60,100),(0,200),(0,0),(90,0). 當(dāng)直線z=2 100x+900y經(jīng)過點(60,100)時,z取得最大值,zmax=2 100×60+900×100=216 000(元).]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!