【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題23 選擇題解題技能訓(xùn)練含解析
《【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題23 選擇題解題技能訓(xùn)練含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題23 選擇題解題技能訓(xùn)練含解析(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、【走向高考】(全國(guó)通用)2016高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題23 選擇題解題技能訓(xùn)練(含解析) 一、選擇題 1.(文)已知拋物線y2=4x的準(zhǔn)線與雙曲線-y2=1(a>0)交于A、B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若△FAB為直角三角形,則雙曲線的離心率是( ) A. B. C.2 D.3 [答案] B [解析] 由題意易知,拋物線的準(zhǔn)線方程為x=-1,焦點(diǎn)為F(1,0),直線x=-1與雙曲線的交點(diǎn)坐標(biāo)為(-1,),若△FAB為直角三角形,則只能是∠AFB為直角,△FAB為等腰直角三角形,所以=2?a=,從而可得c=,所以雙曲線的離心率e==,選
2、B. (理)(2014中原名校聯(lián)考)已知雙曲線+=1,以右頂點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓被雙曲線的一條漸近線分為弧長(zhǎng)為12的兩部分,則雙曲線的離心率為( ) A. B. C. D. [答案] B [解析] 由條件知∠OAB=120,從而∠BOA=30, ∴=,∴=,∴e2=,∵e>1,∴e=. [方法點(diǎn)撥] 直接法 直接從題設(shè)條件出發(fā),運(yùn)用有關(guān)概念、性質(zhì)、定理、法則和公式等知識(shí),通過嚴(yán)密地推理和準(zhǔn)確地運(yùn)算,從而得出正確的結(jié)論,然后對(duì)照題目所給出的選項(xiàng)“對(duì)號(hào)入座”,作出相應(yīng)的選擇.涉及概念、性質(zhì)的辨析或運(yùn)算較簡(jiǎn)單的題目常用直接法. 直接法解答選擇題是最
3、基本的方法,用直接法解題的關(guān)鍵是掌握相關(guān)知識(shí),熟練應(yīng)用有關(guān)數(shù)學(xué)方法與技巧,準(zhǔn)確把握題目的特點(diǎn).平時(shí)應(yīng)對(duì)基礎(chǔ)知識(shí)、基本技能與方法強(qiáng)化記憶靈活應(yīng)用.請(qǐng)練習(xí)下題: (2015河南省高考適應(yīng)性測(cè)試)已知橢圓C1:+y2=1,雙曲線C2:-=1(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則雙曲線C2的離心率為( ) A.4 B. C. D. [答案] C [解析] 雙曲線的一條漸近線方程為:y=x,設(shè)它與橢圓C1的交點(diǎn)為CD,易得|CD|=|AB|=, 由 得:+x2=1,x=, ∴|CD|=2=2=,
4、整理得:a2=b2,∴e=. 2.(2015新課標(biāo)Ⅱ文,9)已知等比數(shù)列滿足a1=,a3a5=4(a4-1),則a2=( ) A.2 B.1 C. D. [答案] C [解析] 由題意可得a3a5=a=4(a4-1)?a4=2,所以q3==8?q=2,故a2=a1q=,選C. 3.(文)如圖,在棱柱的側(cè)棱A1A和B1B上各有一動(dòng)點(diǎn)P、Q滿足A1P=BQ,過P,Q,C三點(diǎn)的截面把棱柱分成兩部分,則其體積之比為( ) A.31 B.21 C.41 D.1 [答案] B [解析] 將P,Q置于特殊位置:使P與A1重合,Q與B重合,此時(shí)仍滿足條件A1P=BQ
5、(=0),則有VC-AA1B=VA1-ABC=,故過P,Q,C三點(diǎn)的截面把棱柱分成的兩部分的體積之比為21. (理)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,如果a、b、c成等差數(shù)列,則等于( ) A. B. C. D. [答案] B [解析] 解法一:取特殊值a=3,b=4,c=5,則cosA=,cosC=0,=, 解法二:取特殊角A=B=C=60,cosA=cosC=,=.故選B. [方法點(diǎn)撥] 特例法 從題干(或選項(xiàng))出發(fā),通過選取特殊情況代入,將問題特殊化或構(gòu)造滿足題設(shè)條件的特殊函數(shù)或圖形位置,進(jìn)行判斷.特殊情況可能是:特殊值、特殊點(diǎn)、特殊位置、特殊函
6、數(shù)、特殊圖形.其解題原理是某個(gè)結(jié)論若對(duì)某范圍內(nèi)的一切情形都成立,則對(duì)該范圍內(nèi)的某個(gè)特殊情形一定成立. 請(qǐng)練習(xí)下題: 已知橢圓E:+=1,對(duì)于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長(zhǎng)與l:y=kx+1被橢圓E截得的弦長(zhǎng)不可能相等的是( ) A.kx+y+k=0 B.kx-y-1=0 C.kx+y-k=0 D.kx+y-2=0 [答案] D [解析] A選項(xiàng)中,當(dāng)k=-1時(shí),兩直線關(guān)于y軸對(duì)稱,兩直線被橢圓截得的弦長(zhǎng)相等;B選項(xiàng)中,當(dāng)k=1時(shí),兩直線平行,兩直線被橢圓截得的弦長(zhǎng)相等;C選項(xiàng)中,k=1時(shí),兩直線關(guān)于y軸對(duì)稱,兩直線被橢圓截得的弦長(zhǎng)相等,故選D. [點(diǎn)評(píng)] 本題充分利
7、用橢圓的對(duì)稱性及“可能相等”用特例作出判斷,方便的獲解,如果盲目從直線與橢圓相交求弦長(zhǎng),則費(fèi)神耗力無收獲. 4.(文)A、B、C是△ABC的3個(gè)內(nèi)角,且A
8、a2x2+…+a6x6且a1+a2+a3+…+a6=63,則實(shí)數(shù)m的值為( ) A.1 B.-1 C.-3 D.1或-3 [答案] D [解析] 令x=0,∴a0=1;令x=1,故(1+m)6=a0+a1+a1+a2+…+a6,且因a1+a2+a3+…+a6=63,∴(1+m)6=64=26,∴m=1或-3. 5.已知f(x)=x2+sin(+x),則f ′(x)的圖象是( ) [答案] A [解析] ∵f(x)=x2+cosx, ∴f ′(x)=x-sinx為奇函數(shù),排除B、D. 又f ′()=-sin=(-1)<0,排除C,選A. [方法點(diǎn)撥] 篩選法 篩
9、選法也叫排除法(淘汰法),它是充分利用選擇題有且只有一個(gè)正確的選項(xiàng)這一特征,通過分析、推理、計(jì)算、判斷,排除不符合要求的選項(xiàng),從而得出正確結(jié)論的一種方法. 6.(文)(2015南昌市一模)給出下列命題: ①若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32 ②α,β,γ是三個(gè)不同的平面,則“γ⊥α,γ⊥β”是“α∥β”的充分條件 ③已知sin=,則cos=.其中正確命題的個(gè)數(shù)為( ) A.0 B.1 C.2 D.3 [答案] B [解析] 對(duì)于①,由(1-x)5=a0+a1x+a2x2+a3x3+
10、a4x4+a5x5得a1<0,a2>0,a3<0,a4>0,a5<0, 取x=-1,得a0-a1+a2-a3+a4-a5=(1+1)5=25,再取x=0得a0=(1-0)5=1,所以|a1|+|a2|+|a3|+|a4|+|a5|=-a1+a2-a3+a4-a5=31,即①不正確; 對(duì)于②,如圖所示的正方體ABCD-A1B1C1D1中,平面ABB1A1⊥平面ABCD,平面ADD1A1⊥平面ABCD,但平面ABB1A1與平面ADD1A1不平行,所以②不正確; 對(duì)于③,因?yàn)閟in=,所以cos=cos=1-2sin2=1-22=,所以③正確. (理)在某地區(qū)某高傳染性病毒流行期間,為了
11、建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各選項(xiàng)中,一定符合上述指標(biāo)的是( ) ①平均數(shù)≤3;②標(biāo)準(zhǔn)差S≤2;③平均數(shù)≤3且標(biāo)準(zhǔn)差S≤2;④平均數(shù)≤3且極差小于或等于2;⑤眾數(shù)等于1且極差小于或等于1. A.①② B.③④ C.③④⑤ D.④⑤ [答案] D [解析] 對(duì)于⑤,由于眾數(shù)為1,所以1在數(shù)據(jù)中,又極差≤1,∴最大數(shù)≤2,符合要求⑤正確;對(duì)于④,由于≤3,∴必有數(shù)據(jù)x0≤3,又極差小于或等于2,∴最大數(shù)不超過5,④正確;當(dāng)數(shù)據(jù)為0,3,3,3,6,3
12、,3時(shí),=3,S2=,滿足≤3且S≤2,但不合要求,③錯(cuò),∴選D.
7.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為( )
A.[-,1] B.[-,1)
C.(-,0) D.(-,0]
[答案] C
[解析] 由g(x)=f(x)-m=0得f(x)=m.作出函數(shù)y=f(x)的圖象,當(dāng)x>0時(shí),f(x)=x2-x=(x-)2-≥-,所以要使函數(shù)g(x)=f(x)-m有三個(gè)不同的零點(diǎn),只需直線y=m與函數(shù)y=f(x)的圖象有三個(gè)交點(diǎn)即可,如圖只需- 13、意義,作出相應(yīng)的幾何圖形,借助于圖象或圖形的作法、形狀、位置、性質(zhì)等,綜合幾何圖形的直觀特征得到正確選項(xiàng)的一種解題方法,其實(shí)質(zhì)就是數(shù)形結(jié)合思想的運(yùn)用.
1.運(yùn)用圖解法解選擇題是依靠圖形的直觀性進(jìn)行分析的,因此要對(duì)有關(guān)的函數(shù)圖象或幾何圖形較熟悉,作圖盡可能準(zhǔn)確才能作出正確的選擇.
2.討論方程根的個(gè)數(shù)、函數(shù)的零點(diǎn)個(gè)數(shù)、函數(shù)圖象交點(diǎn)個(gè)數(shù),直線與圓錐曲線或圓錐曲線之間位置關(guān)系的題目,三角形解的討論,立體幾何中線面位置關(guān)系的判斷,線性規(guī)劃等等問題常借助圖形處理.
請(qǐng)練習(xí)下題:
(2014長(zhǎng)春市三調(diào))已知實(shí)數(shù)x、y滿足:,z=|2x-2y-1|,則z的取值范圍是( )
A.[,5] B.[ 14、0,5]
C. [0,5) D. [,5)
[答案] C
[解析] 畫出x,y約束條件限定的可行域?yàn)槿鐖D陰影區(qū)域,令u=2x-2y-1,則y=x-,先畫出直線y=x,再平移直線y=x,當(dāng)經(jīng)過點(diǎn)A(2,-1),B(,)時(shí),可知-≤u<5,∴z=|u|∈[0,5),故選C.
8.(2015遼寧葫蘆島市一模)若變量x,y滿足約束條件且z=2x+y的最大值和最小值分別為m和n,則m-n=( )
A.5 B.6
C.7 D.8
[答案] B
[解析] 作出可行域如圖
平移直線2x+y=0知,當(dāng)z=2x+y經(jīng)過點(diǎn)A(-1,-1)時(shí)取得最小值,經(jīng)過點(diǎn)B(2,-1)時(shí)取得最 15、大值,
∴m=22-1=3,n=2(-1)-1=-3,
∴m-n=3-(-3)=6.
9.(2015安徽文,10)函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則下列結(jié)論成立的是( )
A.a(chǎn)>0,b<0,c>0,d>0 B.a(chǎn)>0,b<0,c<0,d>0
C.a(chǎn)<0,b<0,c>0,d>0 D.a(chǎn)>0,b>0,c>0,d<0
[答案] A
[解析] 令x=0?d>0,又f′(x)=3ax2+2bx+c,由函數(shù)f(x)的圖象可知x1,x2是f′(x)=0的兩根,由圖可知x1>0,x2>0,x1 16、2)x+3ax1x2,當(dāng)x∈(-∞,x1)時(shí),f(x)單調(diào)遞增,f′(x)>0,∴a>0.
∴?故A正確.
10.(文)已知sinθ=,cosθ=(<θ<π),則tan=( )
A. B.
C.- D.5
[答案] D
[解析] 由于受條件sin2θ+cos2θ=1的制約,m為一確定的值,因此tan也為一確定的值,又<θ<π,所以<<,故tan>1,因此排除A、B、C,選D.
(理)圖中陰影部分的面積S是h的函數(shù)(0≤h≤H),則該函數(shù)的大致圖象是( )
[答案] B
[解析] 由圖知,隨著h的增大,陰影部分的面積S逐漸減小,且減小得越來越慢,結(jié)合選項(xiàng)可知選B 17、.
[方法點(diǎn)撥] 估算法
由于選擇題提供了唯一正確的選項(xiàng),解答又無需過程,因此,有些題目不必進(jìn)行準(zhǔn)確的計(jì)算,只需對(duì)其數(shù)值特點(diǎn)和取值界限作出適當(dāng)?shù)墓烙?jì),便能作出正確的判斷,這就是估算法.
估算法是根據(jù)變量變化的趨勢(shì)或極值的取值情況進(jìn)行求解的方法.當(dāng)題目從正面解答比較麻煩,特值法又無法確定正確的選項(xiàng)時(shí),如難度稍大的函數(shù)的最值或取值范圍、函數(shù)圖象的變化,幾何體的表面積、體積等問題,常用此種方法確定選項(xiàng).
11.(文)(2014石家莊市質(zhì)檢)已知雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過 18、F2作直線PQ的垂線,垂足為B,則|OA|與|OB|的長(zhǎng)度依次為( )
A.a(chǎn),a B.a(chǎn),
C., D. ,a
[答案] A
[解析] 如圖,由題意知,|PF1|-|PF2|=2a,|PF1|=|PC|+|CF1|,|PF2|=|PD|+|DF2|,又|CF1|=|F1A|,|DF2|=|F2A|,∴|PF1|-|PF2|=|F1A|-|F2A|=|OF1|+|OA|-(|OF2|-|OA|)=2|OA|=2a,∴|OA|=a,同理可求得|OB|=a.
(理)若方程cos2x+sin2x=a+1在[0,]上有兩個(gè)不同的實(shí)數(shù)解x,則參數(shù)a的取值范圍是( )
A.0≤a 19、<1 B.-3≤a<1
C.a(chǎn)<1 D.05π.
13.(文)各項(xiàng)均為正數(shù)的數(shù)列{an},{bn}滿 20、足:an+2=2an+1+an,bn+2=bn+1+2bn(n∈N*),那么( )
A.?n∈N*,an>bn?an+1>bn+1
B.?m∈N*,?n>m,an>bn
C.?m∈N*,?n>m,an=bn
D.?m∈N*,?n>m,an 21、A.成等比數(shù)列
B.成等差數(shù)列
C.即是等差數(shù)列又是等比數(shù)列
D.即不是等差數(shù)列又不是等比數(shù)列
[答案] D
[解析] 方法1:可用特殊值法.
令a=2,b=4,c=8,n=2,即可得出答案D正確.
方法2:∵a、b、c成等比數(shù)列,
∴可設(shè)b=aq,c=aq2.(q>1,a>0)
則:logbn=log(aq)n=,logcn=log(aq2)n=,
可驗(yàn)證,logan,logbn,logcn既不是等差數(shù)列又不是等比數(shù)列.故選D.
14.(文)某興趣小組野外露營(yíng),計(jì)劃搭建一簡(jiǎn)易帳篷,關(guān)于帳篷的形狀,有三人提出了三種方案,甲建議搭建如圖①所示的帳篷;乙建議搭建如②所示的帳篷 22、;丙建議搭建如③所示的帳篷.
設(shè)帳篷頂?shù)男泵媾c水平面所成的角都是α,則用料最省的一種建法是( )(四根立柱圍成的面積相同)
A.① B.②
C.③ D.都一樣
[答案] D
[解析] 由于帳篷頂與水平面所成的角都是α,則不論哪種建法,頂部在地面的射影面積都相等,由S=S射cosα得,不論哪種建法,所用料的面積都相等.
(理)若等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)的和為S,前n項(xiàng)的積為P,前n項(xiàng)倒數(shù)的和為M,則有( )
A.P= B.P>
C.P2=()n D.P2>()n
[答案] C
[解析] 取等比數(shù)列為常數(shù)列:1,1,1,…,則S=n,P=1,M=n,顯然P 23、>和P2>()n不成立,故選項(xiàng)B和D排除,這時(shí)選項(xiàng)A和C都符合要求.再取等比數(shù)列:2,2,2,…,則S=2n,P=2n,M=,這時(shí)有P2=()n,且P≠,所以選項(xiàng)A不正確.
15.(文)函數(shù)f(x)=(1-cosx)sinx在[-π,π]的圖象大致為( )
[答案] C
[解析] 由函數(shù)f(x)為奇函數(shù),排除B;當(dāng)0≤x<π時(shí),f(x)≥0,排除A;又f′(x)=-2cos2x+cosx+1,
f′(0)=0,則cosx=1或cosx=-,結(jié)合x∈[-π,π],求得f(x)在(0,π]上的極大值點(diǎn)為,靠近π,排除D.
(理)函數(shù)y=xcosx+sinx的圖象大致為( )
24、
[答案] D
[解析] 由函數(shù)y=xcosx+sinx為奇函數(shù),排除B;當(dāng)x=π時(shí),y=-π,排除A;當(dāng)x=時(shí),y=1,排除C.
16.(文)(2014浙江理,7)在同一直角坐標(biāo)系中,函數(shù)f(x)=xa(x≥0),g(x)=logax的圖象可能是( )
[答案] D
[解析] 本題考查冪函數(shù)和對(duì)數(shù)函數(shù)圖象.選項(xiàng)A沒有冪函數(shù)圖象.選項(xiàng)B中y=xa(a≥0)中a>1.y=logax(x>0)中00)中a>1.不符合.選項(xiàng)D中y=xa(x≥a)中00)中0
25、
(理)如果函數(shù)y=f(x)的圖象如圖所示,那么導(dǎo)函數(shù)y=f ′(x)的圖象可能是( )
[答案] A
[解析] 由y=f(x)的圖象可知其單調(diào)性從左向右依次為增減增減,所以其導(dǎo)數(shù)y=f′(x)的函數(shù)值依次為正負(fù)正負(fù),由此可排除B、C、D.
[方法點(diǎn)撥] 解答選擇題的常用方法主要分直接法和間接法兩大類.直接法是解答選擇題最基本、最常用的方法,但高考的題量較大,如果所有選擇題都用直接法解答,不但時(shí)間不允許,甚至有些題目根本無法解答.因此,我們還要研究解答選擇題的一些間接法的應(yīng)用技巧,以節(jié)省解題時(shí)間.解答選擇題的總體策略是:充分利用題干和選項(xiàng)所提供的信息作出判斷,先定性后定量,先特殊后推理,先間接后直接,先排除后求解.
17.(2015四川文,5)下列函數(shù)中,最小正周期為π的奇函數(shù)是( )
A.y=sin B.y=cos
C.y=sin 2x+cos 2x D.y=sin x+cos x
[答案] B
[解析] A、B、C的周期都是π,D的周期是2π,但A中,y=cos 2x是偶函數(shù),C中y=sin (2x+)是非奇非偶函數(shù).故正確答案為B.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)生產(chǎn)決策報(bào)告
- 進(jìn)口鐵礦粉的燒結(jié)性能及配礦方法
- 經(jīng)濟(jì)學(xué)說史第十四章新凱恩斯主義
- 時(shí)間管理從拖延走向高效的基石
- (聽賞)月光下的鳳尾竹
- 課題1水的組成 (10)(精品)
- 客戶溝通方法與技巧
- 大中華國(guó)際交易廣場(chǎng)寫字樓項(xiàng)目營(yíng)銷推廣報(bào)告
- 易拉罐尺寸的最優(yōu)設(shè)計(jì)方案
- 智慧教室核舟記
- 信息化 BI 商業(yè)智能與企業(yè)即時(shí)戰(zhàn)情中心
- 語文蘇教版六年級(jí)上冊(cè)《船長(zhǎng)》第一課時(shí)
- 曲軸工藝基礎(chǔ)知識(shí)
- 電信集團(tuán)網(wǎng)規(guī)網(wǎng)優(yōu)A+級(jí)培訓(xùn)——11-CDMA功率控制及參數(shù)設(shè)置
- 三、物質(zhì)的密度 (2)