影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27

上傳人:仙*** 文檔編號:43051555 上傳時間:2021-11-29 格式:DOC 頁數(shù):9 大?。?00KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27_第1頁
第1頁 / 共9頁
高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27_第2頁
第2頁 / 共9頁
高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學人教A版理科含答案導學案【第五章】平面向量 學案27(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 學案27 平面向量的數(shù)量積及其應(yīng)用 導學目標: 1.理解平面向量數(shù)量積的含義及其物理意義.2.了解平面向量的數(shù)量積與向量投影的關(guān)系.3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.4.能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系.5.會用向量方法解決某些簡單的平面幾何問題.6.會用向量方法解決簡單的力學問題與其他一些實際問題. 自主梳理 1.向量數(shù)量積的定義 (1)向量數(shù)量積的定義:____________________________________________,其中|a|c

2、os〈a,b〉叫做向量a在b方向上的投影. (2)向量數(shù)量積的性質(zhì): ①如果e是單位向量,則ae=ea=__________________; ②非零向量a,b,a⊥b?________________; ③aa=________________或|a|=________________; ④cos〈a,b〉=________; ⑤|ab|____|a||b|. 2.向量數(shù)量積的運算律 (1)交換律:ab=________; (2)分配律:(a+b)c=________________; (3)數(shù)乘向量結(jié)合律:(λa)b=________________. 3.向量數(shù)量積

3、的坐標運算與度量公式 (1)兩個向量的數(shù)量積等于它們對應(yīng)坐標乘積的和,即若a=(a1,a2),b=(b1,b2),則ab=________________________; (2)設(shè)a=(a1,a2),b=(b1,b2),則a⊥b?________________________; (3)設(shè)向量a=(a1,a2),b=(b1,b2), 則|a|=________________,cos〈a,b〉=____________________________. (4)若A(x1,y1),B(x2,y2),則|=________________________,所以||=_________

4、____________. 自我檢測 1.(2010湖南)在Rt△ABC中,∠C=90,AC=4,則等于 (  ) A.-16 B.-8 C.8 D.16 2.(2010重慶)已知向量a,b滿足ab=0,|a|=1,|b|=2,則|2a-b|= (  ) A.0 B.2 C.4 D.8 3.(2011福州月考)已知a=(1,0),b=(1,1),(a+λb)⊥b,則λ等于 (  ) A.-2 B.2 C. D.- 4.平面上有三個點A(-2,y),B(0,)

5、,C(x,y),若⊥,則動點C的軌跡方程為________________. 5.(2009天津)若等邊△ABC的邊長為2,平面內(nèi)一點M滿足=+,則=________. 探究點一 向量的模及夾角問題 例1 (2011馬鞍山月考)已知|a|=4,|b|=3,(2a-3b)(2a+b)=61. (1)求a與b的夾角θ;(2)求|a+b|; (3)若=a,=b,求△ABC的面積. 變式遷移1 (1)已知a,b是平面內(nèi)兩個互相垂直的單位向量,若向量c滿足(a-c)(b-c)=0,則|c|的最大值是

6、 (  ) A.1 B.2 C. D. (2)已知i,j為互相垂直的單位向量,a=i-2j,b=i+λj,且a與b的夾角為銳角,實數(shù)λ的取值范圍為________. 探究點二 兩向量的平行與垂直問題 例2 已知a=(cos α,sin α),b=(cos β,sin β),且ka+b的長度是a-kb的長度的倍(k>0). (1)求證:a+b與a-b垂直; (2)用k表示ab; (3)求ab的最小值以及此時a與b的夾角θ. 變式遷移2 (2009江蘇)設(shè)向量a=(4cos α,sin α),b=(si

7、n β,4cos β),c=(cos β,-4sin β). (1)若a與b-2c垂直,求tan(α+β)的值; (2)求|b+c|的最大值; (3)若tan αtan β=16,求證:a∥b. 探究點三 向量的數(shù)量積在三角函數(shù)中的應(yīng)用 例3 已知向量a=, b=,且x∈. (1)求ab及|a+b|; (2)若f(x)=ab-|a+b|,求f(x)的最大值和最小值. 變式遷移3 (2010四川)已知△ABC的面積S==3,且cos B=,求cos C. 1.一些常見的錯誤結(jié)論: (1)若|a|=|b|,則a=b;(2)若

8、a2=b2,則a=b;(3)若a∥b,b∥c,則a∥c;(4)若ab=0,則a=0或b=0;(5)|ab|=|a||b|;(6)(ab)c=a(bc);(7)若ab=ac,則b=c.以上結(jié)論都是錯誤的,應(yīng)用時要注意. 2.平面向量的坐標表示與向量表示的比較: 已知a=(x1,y1),b=(x2,y2),θ是向量a與b的夾角. 向量表示 坐標表示 向量a的模 |a|== |a|= a與b的數(shù)量積 ab=|a||b|cos θ ab=x1x2+y1y2 a與b共線的充要條件 A∥b(b≠0)?a=λb a∥b?x1y2-x2y1=0 非零向量a,b垂直的充要條件

9、a⊥b?ab=0 a⊥b?x1x2+y1y2=0 向量a與b的夾角 cos θ= cos θ= 3.證明直線平行、垂直、線段相等等問題的基本方法有: (1)要證AB=CD,可轉(zhuǎn)化證明2=2或||=||. (2)要證兩線段AB∥CD,只要證存在唯一實數(shù)≠0,使等式=λ成立即可. (3)要證兩線段AB⊥CD,只需證=0. (滿分:75分) 一、選擇題(每小題5分,共25分) 1.(2010重慶)若向量a=(3,m),b=(2,-1),ab=0,則實數(shù)m的值為 (  ) A.- B. C.2 D.6 2.已知非零向量a,b,

10、若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),則實數(shù)k的值為 (  ) A.-6 B.-3 C.3 D.6 3.已知△ABC中,=a,=b,ab<0,S△ABC=,|a|=3,|b|=5,則∠BAC等于 (  ) A.30 B.-150 C.150 D.30或150 4.(2010湖南)若非零向量a,b滿足|a|=|b|,(2a+b)b=0,則a與b的夾角

11、為 (  ) A.30 B.60 C.120 D.150 5.已知a=(2,3),b=(-4,7),則a在b上的投影為 (  ) A. B. C. D. 題號 1 2 3 4 5 答案 二、填空題(每小題4分,共12分) 6.(2010湖南長沙一中月考)設(shè)a=(cos 2α,sin α),b=(1,2sin α-1),α∈,若ab=,則sin α=________. 7.(2010廣東金山中學高三第二次月考)若|a|=1,

12、|b|=2,c=a+b,且c⊥a,則向量a與b的夾角為________. 8.已知向量m=(1,1),向量n與向量m夾角為,且mn=-1,則向量n=__________________. 三、解答題(共38分) 9.(12分)已知=(2,5),=(3,1),=(6,3),在線段OC上是否存在點M,使⊥,若存在,求出點M的坐標;若不存在,請說明理由. 10.(12分)(2011杭州調(diào)研)已知向量a=(cos(-θ),sin(-θ)),b=(cos,sin). (1)求證:a⊥b; (2)若存在不等于0的實數(shù)k和t,使x=a+(t2+3)b,y=-ka+tb,滿足x⊥y

13、,試求此時的最小值. 11.(14分)(2011濟南模擬)已知a=(1,2sin x),b=,函數(shù)f(x)=ab (x∈R). (1)求函數(shù)f(x)的單調(diào)遞減區(qū)間; (2)若f(x)=,求cos的值. 答案 自主梳理 1.(1)ab=|a||b|cos〈a,b〉 (2)①|(zhì)a|cos〈a,e〉 ②ab=0?、踻a|2 ?、堋? ⑤≤ 2.(1)ba (2)ac+bc (3)λ(ab) 3.(1)a1b1+a2b2 (2)a1b1+a2b2=0 (3)  (4)(x2-x1,y2-y1)  自我檢測 2.B [|2a-b|= ===2.]

14、3.D [由(a+λb)b=0得ab+λ|b|2=0, ∴1+2λ=0,∴λ=-.] 4.y2=8x(x≠0) 解析 由題意得=, =,又⊥,∴=0, 即=0,化簡得y2=8x(x≠0). 5.-2 解析 合理建立直角坐標系,因為三角形是正三角形,故設(shè)C(0,0),A(2,0),B(,3),這樣利用向量關(guān)系式,求得=,=,=,所以=-2. 課堂活動區(qū) 例1 解 (1)∵(2a-3b)(2a+b)=61, ∴4|a|2-4ab-3|b|2=61. 又|a|=4,|b|=3,∴64-4ab-27=61, ∴ab=-6. ∴cos θ===-. 又0≤θ≤π,∴θ=.

15、(2)|a+b|= = ==. (3)∵與的夾角θ=, ∴∠ABC=π-=. 又||=|a|=4,||=|b|=3, ∴S△ABC=||||sin∠ABC =43=3. 變式遷移1 (1)C [∵|a|=|b|=1,ab=0, 展開(a-c)(b-c)=0?|c|2=c(a+b) =|c||a+b|cos θ,∴|c|=|a+b|cos θ=cos θ, ∴|c|的最大值是.] (2)λ<且λ≠-2 解析 ∵〈a,b〉∈(0,),∴ab>0且ab不同向. 即|i|2-2λ|j|2>0,∴λ<. 當ab同向時,由a=kb(k>0)得λ=-2. ∴λ<且λ≠-2.

16、 例2 解題導引 1.非零向量a⊥b?ab=0?x1x2+y1y2=0. 2.當向量a與b是非坐標形式時,要把a、b用已知的不共線的向量表示.但要注意運算技巧,有時把向量都用坐標表示,并不一定都能夠簡化運算,要因題而異. 解 (1)由題意得,|a|=|b|=1, ∴(a+b)(a-b)=a2-b2=0, ∴a+b與a-b垂直. (2)|ka+b|2=k2a2+2kab+b2=k2+2kab+1, (|a-kb|)2=3(1+k2)-6kab. 由條件知,k2+2kab+1=3(1+k2)-6kab, 從而有,ab=(k>0). (3)由(2)知ab==(k+)≥, 當k=時

17、,等號成立,即k=1. ∵k>0,∴k=1. 此時cos θ==,而θ∈[0,π],∴θ=. 故ab的最小值為,此時θ=. 變式遷移2 (1)解 因為a與b-2c垂直, 所以a(b-2c) =4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2. (2)解 由b+c=(sin β+cos β,4cos β-4sin β), 得|b+c|= =≤4. 又當β=-時,等號成立,所以|b+c|的最大值為4. (3)證明 由tan αtan β=16得=, 所

18、以a∥b. 例3 解題導引 與三角函數(shù)相結(jié)合考查向量的數(shù)量積的坐標運算及其應(yīng)用是高考熱點題型.解答此類問題,除了要熟練掌握向量數(shù)量積的坐標運算公式,向量模、夾角的坐標運算公式外,還應(yīng)掌握三角恒等變換的相關(guān)知識. 解 (1)ab=cos xcos -sin xsin =cos 2x, |a+b|= ==2|cos x|, ∵x∈,∴cos x>0, ∴|a+b|=2cos x. (2)f(x)=cos 2x-2cos x=2cos2x-2cos x-1 =22-. ∵x∈,∴≤cos x≤1, ∴當cos x=時,f(x)取得最小值-; 當cos x=1時,f(x)取得最大

19、值-1. 變式遷移3 解 由題意,設(shè)△ABC的角B、C的對邊分別為b、c,則S=bcsin A=. =bccos A=3>0, ∴A∈,cos A=3sin A. 又sin2A+cos2A=1, ∴sin A=,cos A=. 由題意cos B=,得sin B=. ∴cos(A+B)=cos Acos B-sin Asin B=. ∴cos C=cos[π-(A+B)]=-. 課后練習區(qū) 1.D [因為ab=6-m=0,所以m=6.] 2.D [由(2a+3b)(ka-4b)=0得2k-12=0,∴k=6.] 3.C [∵S△ABC=|a||b|sin∠BAC=, ∴

20、sin∠BAC=.又ab<0, ∴∠BAC為鈍角.∴∠BAC=150.] 4.C [由(2a+b)b=0,得2ab=-|b|2. cos〈a,b〉===-. ∵〈a,b〉∈[0,180],∴〈a,b〉=120.] 5.B [因為ab=|a||b|cos〈a,b〉, 所以,a在b上的投影為|a|cos〈a,b〉 ====.] 6. 解析 ∵ab=cos 2α+2sin2α-sin α=, ∴1-2sin2α+2sin2α-sin α=,∴sin α=. 7.120 解析 設(shè)a與b的夾角為θ,∵c=a+b,c⊥a, ∴ca=0,即(a+b)a=0.∴a2+ab=0. 又

21、|a|=1,|b|=2,∴1+2cos θ=0. ∴cos θ=-,θ∈[0,180]即θ=120. 8.(-1,0)或(0,-1) 解析 設(shè)n=(x,y),由mn=-1, 有x+y=-1.① 由m與n夾角為, 有mn=|m||n|cos , ∴|n|=1,則x2+y2=1.② 由①②解得或, ∴n=(-1,0)或n=(0,-1). 9.解 設(shè)存在點M,且=λ=(6λ,3λ) (0≤λ≤1), =(2-6λ,5-3λ),=(3-6λ,1-3λ).…………………………………………(4分) ∵⊥, ∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,…………………

22、……………………………(8分) 即45λ2-48λ+11=0,解得λ=或λ=. ∴M點坐標為(2,1)或. 故在線段OC上存在點M,使⊥,且點M的坐標為(2,1)或(,).………(12分) 10.(1)證明 ∵ab=cos(-θ)cos+sinsin =sin θcos θ-sin θcos θ=0.∴a⊥b.……………………………………………………(4分) (2)解 由x⊥y得,xy=0, 即[a+(t2+3)b](-ka+tb)=0, ∴-ka2+(t3+3t)b2+[t-k(t2+3)]ab=0, ∴-k|a|2+(t3+3t)|b|2=0.……………………………………

23、…………………………(6分) 又|a|2=1,|b|2=1, ∴-k+t3+3t=0,∴k=t3+3t.…………………………………………………………(8分) ∴==t2+t+3 =2+.……………………………………………………………………………(10分) 故當t=-時,有最小值.………………………………………………………(12分) 11.解 (1)f(x)=ab=2cos+2sin x =2cos xcos -2sin xsin +2sin x =cos x+sin x=2sin.…………………………………………………………(5分) 由+2kπ≤x+≤+2kπ,k∈Z, 得+2kπ≤x≤+2kπ,k∈Z. 所以f(x)的單調(diào)遞減區(qū)間是 (k∈Z).……………………………………………………………(8分) (2)由(1)知f(x)=2sin. 又因為2sin=, 所以sin=,……………………………………………………………………(11分) 即sin=cos=cos=. 所以cos=2cos2-1=.………………………………………………(14分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!