《高考數(shù)學(xué)理一輪資源庫第八章 第6講立體幾何中的向量方法(Ⅰ)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理一輪資源庫第八章 第6講立體幾何中的向量方法(Ⅰ)(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料
第6講 立體幾何中的向量方法(Ⅰ)
——證明平行與垂直
一、填空題
1.已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).若|a|=,且a分別與,垂直,則向量a為________.
解析 由條件知=(-2,-1,3),=(1,-3,2),設(shè)a=(x,y,z)則有解可得a=(1,1,1).
答案 (1,1,1)或(-1,-1,-1)
2.已知a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).若c與a及b都垂直,則m,n的值分別為________.
解析 由已知得c=(
2、m+4,m+2n-4,m-n+1),
故ac=3m+n+1=0,bc=m+5n-9=0.
解得
答案?。?,2
3.已知a=,b=滿足a∥b,則λ等于________.
解析 由==,可知λ=.
答案
4.若直線l的方向向量為a,平面α的法向量為n,在下列四組向量中能使l∥α的是________(填序號(hào)).
①a=(1,0,0),n=(-2,0,0);②a=(1,3,5),n=(1,0,1);③a=(0,2,1),n=(-1,0,-1);④a=(1,-1,3),n=(0,3,1).
解析 若l∥α,則an=0.而①中an=-2,
②中an=1+5=6,③中an=-1,只有
3、④選項(xiàng)中an=-3+3=0.
答案 ④
5.設(shè)a=(1,2,0),b=(1,0,1),則“c=”是“c⊥a,c⊥b且c為單位向量”的________條件.
解析 當(dāng)c=時(shí),c⊥a,c⊥b且c為單位向量,反之則不成立.
答案 充分不必要
6.若|a|=,b=(1,2,-2),c=(2,3,6),且a⊥b,a⊥c,則a=________.
解析 設(shè)a=(x,y,z),∵a⊥b,∴x+2y-2z=0. ①
∵a⊥c,∴2x+3y+6z=0. ②
∵|a|=,∴x2+y2+z2=17. ③
聯(lián)立①②得x=-18z,y=10z,
代
4、入③得425z2=17,z=.
∴a=或.
答案 或
7.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,則實(shí)數(shù)x,y,z分別為________.
解析 ∵⊥,∴=0,即3+5-2z=0,得z=4,
又BP⊥平面ABC,∴BP⊥AB,BP⊥BC,=(3,1,4),
則解得
答案 ,-,4
8.設(shè)點(diǎn)C(2a+1,a+1,2)在點(diǎn)P(2,0,0)、A(1,-3,2)、B(8,-1,4)確定的平面上,則a=________.
解析?。?-1,-3,2),=(6,-1,4).
根據(jù)共面向量定理,設(shè)=x+y(x,y∈R),
則(2a-1,
5、a+1,2)=x(-1,-3,2)+y(6,-1,4)
=(-x+6y,-3x-y,2x+4y),
∴解得x=-7,y=4,a=16.
答案 16
9.我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中利用動(dòng)點(diǎn)軌跡的方法,可以求出過點(diǎn)A(2,1)且法向量n=(-1,2)的直線(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡得x-2y=0,類比以上求法在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(3,-1,3)且法向量為n=(1,-2,1)的平面(點(diǎn)法式)方程為________.(請(qǐng)寫出化簡后的結(jié)果)
解析 設(shè)P(x,y,z)是平面內(nèi)的任意一點(diǎn),則⊥n,
∴n=(3-x,-1-
6、y,3-z)(1,-2,1)=0,
即x-2y+z-8=0.
答案 x-2y+z-8=0
10. 如圖,在正方體ABCD-A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是________.
解析 ∵正方體棱長為a,A1M=AN=,
∴=,=,
∴=++=++
=(+)++(+)
=+.又∵是平面B1BCC1的法向量,
∴==0,∴⊥.
又∵M(jìn)N?平面B1BCC1,∴MN∥平面B1BCC1.
答案 平行
二、解答題
11. 如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1
7、,M是線段EF的中點(diǎn).
求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
證明 (1)建立如圖所示的空間直角坐標(biāo)系,
設(shè)AC∩BD=N,連接NE.
則點(diǎn)N、E的坐標(biāo)分別為
、(0,0,1).
∴=.
又點(diǎn)A、M的坐標(biāo)分別是(,,0)、
∴=.
∴=且與不共線.∴NE∥AM.
又∵NE?平面BDE,AM?平面BDE,
∴AM∥平面BDE.
(2)由(1)知=,
∵D(,0,0),F(xiàn)(,,1),B(0,,0),
∴=(0,,1),=(,0,1),
∴=0,=0,
∴AM⊥DF,AM⊥BF.
又DF∩BF=F,∴AM⊥平面BDF.
12. 如圖,正四棱柱
8、ABCD-A1B1C1D1中,設(shè)AD=1,D1D=λ(λ>0),若棱C1C上存在點(diǎn)P滿足A1P⊥平面PBD,求實(shí)數(shù)λ的取值范圍.
解 如圖,以點(diǎn)D為原點(diǎn)O,DA,DC,DD1分別為x,y,z軸建立空間直角坐標(biāo)系D-xyz,則D(0,0,0),B(1,1,0),A1(1,0,λ),設(shè)P(0,1,x),其中x∈[0,λ],
則=(-1,1,x-λ),=(-1,0,x).
∵A1P⊥平面PBD,
∴=0,
即(-1,1,x-λ)(-1,0,x)=0,化簡,得x2-λx+1=0,x∈[0,λ],
故判別式Δ=λ2-4≥0,且λ>0,
解得λ≥2.
∴λ的取值范圍是[2,+∞).
13
9、. 在棱長為2的正方體ABCD-A1B1C1D1中,E為棱AB的中點(diǎn),點(diǎn)P在平面A1B1C1D1內(nèi).若D1P⊥平面PCE,試求線段D1P的長.
解 建立如圖所示的空間直角坐標(biāo)系,則D1(0,0,2),E(2,1,0),C(0,2,0).
設(shè)P(x,y,2),則=(x,y,0),=(x-2,y-1,2),
=(-2,1,0).
∵D1P⊥平面PCE,∴D1P⊥EP,D1P⊥EC,
即⊥,⊥,
∴=0,=0,
故
解得(舍去)或即P,
∴=,∴D1P= =.
14.如圖(1),在Rt△ABC中,∠C=90,BC=3,AC=6.D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=
10、2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖(2).
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說明理由.
(1)證明 ∵AC⊥BC,DE∥BC,∴DE⊥AC.
∴DE⊥A1D,DE⊥CD,∴DE⊥平面A1DC,
又A1C?平面A1DC,∴DE⊥A1C.
又∵A1C⊥CD,∴A1C⊥平面BCDE.
(2)解 如圖所示,以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C-xyz
則A1(0,0,2),D(0,2,0),M(0,1,),B(3,0,
11、0),E(2,2,0).
設(shè)平面A1BE的法向量為n=(x,y,z),
則n=0,n=0.
又=(3,0,-2),=(-1,2,0),∴
令y=1,則x=2,z=,∴n=(2,1,).
設(shè)CM與平面A1BE所成的角為θ.∵=(0,1,),
∴sin θ=|cos〈n,〉|===.
∴CM與平面A1BE所成角的大小為.
(3)解 線段BC上不存在點(diǎn)P,使平面A1DP與平面A1BE垂直.理由如下:假設(shè)這樣的點(diǎn)P存在,設(shè)其坐標(biāo)為(p,0,0),其中p∈[0,3].設(shè)平面A1DP的法向量為m=(x′,y′,z′),
則m=0,m=0.又=(0,2,-2),
=(p,-2,0),∴
令x′=2,則y′=p,z′=,∴m=.
平面A1DP⊥平面A1BE,當(dāng)且僅當(dāng)mn=0,
即4+p+p=0.解得p=-2,與p∈[0,3]矛盾.
∴線段BC上不存在點(diǎn)P,使平面A1DP與平面A1BE垂直.