影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4

上傳人:仙*** 文檔編號:43051865 上傳時間:2021-11-29 格式:DOC 頁數(shù):17 大?。?42KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4_第1頁
第1頁 / 共17頁
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4_第2頁
第2頁 / 共17頁
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應(yīng)用 第三章 3.4(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 §3.4 三角函數(shù)的圖象和性質(zhì) 1. 用五點法作正弦函數(shù)和余弦函數(shù)的簡圖 正弦函數(shù)y=sin x,x∈[0,2π]的圖象中,五個關(guān)鍵點是:(0,0),(,1),(π,0),(,-1),(2π,0). 余弦函數(shù)y=cos x,x∈[0,2π]的圖象中,五個關(guān)鍵點是:(0,1),(,0),(π,-1),(,0),(2π,1). 2. 正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖象和性質(zhì) 函數(shù) y=sin x y=cos x y=tan x 圖象 定義域 R R {x|x∈R且x≠+kπ,

2、k∈Z} 值域 [-1,1] [-1,1] R 單調(diào)性 [-+2kπ,+2kπ](k∈Z)上遞增; [+2kπ,+2kπ](k∈Z)上遞減 [-π+2kπ,2kπ](k∈Z)上遞增; [2kπ,π+2kπ](k∈Z)上遞減 (-+kπ,+kπ)(k∈Z)上遞增 最值 x=+2kπ(k∈Z)時,ymax=1; x=-+2kπ(k∈Z)時,ymin=-1 x=2kπ(k∈Z)時,ymax=1; x=π+2kπ(k∈Z)時,ymin=-1 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 對稱中心 (kπ,0)(k∈Z) (+kπ,0) (k∈Z) (,0)(k∈Z)

3、 對稱軸方程 x=+kπ(k∈Z) x=kπ(k∈Z) 周期 2π 2π π 1. 判斷下面結(jié)論是否正確(請在括號中打“√”或“×”) (1)常數(shù)函數(shù)f(x)=a是周期函數(shù),它沒有最小正周期. ( √ ) (2)y=sin x在x∈[0,]上是增函數(shù). ( √ ) (3)y=cos x在第一、二象限上是減函數(shù). ( × ) (4)y=tan x在整個定義域上是增函數(shù). ( × ) (5)y=ksin x+1(x∈R),則ymax=k+1. ( × 

4、) (6)若sin x>,則x>. ( × ) 2. (2012·福建)函數(shù)f(x)=sin的圖象的一條對稱軸是 (  ) A.x= B.x= C.x=- D.x=- 答案 C 解析 方法一 ∵正弦函數(shù)圖象的對稱軸過圖象的最高點或最低點, 故令x-=kπ+,k∈Z,∴x=kπ+,k∈Z. 取k=-1,則x=-. 方法二 用驗證法. x=時,y=sin=0,不合題意,排除A; x=時,y=sin=,不合題意,排除B; x=-時,y=sin=-1,符合題意,C項正確; x=-時,y=sin=-

5、,不合題意,故D項也不正確. 3. 若函數(shù)f(x)=sin ωx (ω>0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則ω等于 (  ) A. B. C.2 D.3 答案 B 解析 ∵f(x)=sin ωx(ω>0)過原點, ∴當0≤ωx≤,即0≤x≤時,y=sin ωx是增函數(shù); 當≤ωx≤,即≤x≤時,y=sin ωx是減函數(shù). 由f(x)=sin ωx (ω>0)在上單調(diào)遞增, 在上單調(diào)遞減知,=,∴ω=. 4. (2013·湖北)將函數(shù)y=cos x+sin x(x∈R) 的圖象向左平移m(

6、m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是 (  ) A. B. C. D. 答案 B 解析 y=cos x+sin x=2sin(x+)向左平移m個單位長度后得到y(tǒng)=2sin(x++m),它關(guān)于y軸對稱可得 sin(+m)=±1, ∴+m=kπ+,k∈Z, ∴m=kπ+,k∈Z, ∵m>0,∴m的最小值為. 5. 函數(shù)y=lg sin 2x+的定義域為________________. 答案 {x|-3≤x<-或0<x<} 解析 由, 得 ∴-3≤x<-或0<x&l

7、t;. ∴函數(shù)y=lg sin 2x+的定義域為 {x|-3≤x<-或0<x<}. 題型一 求三角函數(shù)的定義域和最值 例1 (1)(2012·山東)函數(shù)y=2sin(0≤x≤9)的最大值與最小值之和為 (  ) A.2- B.0 C.-1 D.-1- (2)函數(shù)y=的定義域為____________________________. 思維啟迪 求函數(shù)的定義域可利用三角函數(shù)的圖象或數(shù)軸;求函數(shù)最值或值域時要利用圖象、三角變換、二次函數(shù)等知識. 答案 (1)A (2){x|x≠+kπ且x≠+kπ,k∈Z} 解析 (1)利用三角函

8、數(shù)的性質(zhì)先求出函數(shù)的最值. ∵0≤x≤9,∴-≤x-≤, ∴sin∈. ∴y∈,∴ymax+ymin=2-. (2)要使函數(shù)有意義,必須有, 即 故函數(shù)的定義域為{x|x≠+kπ且x≠+kπ,k∈Z}. 思維升華 (1)求三角函數(shù)的定義域?qū)嶋H上是解簡單的三角不等式,常借助三角函數(shù)線或三角函數(shù)圖象來求解. (2)求解三角函數(shù)的值域(最值)常見到以下幾種類型的題目: ①形如y=asin x+bcos x+c的三角函數(shù)化為y=Asin(ωx+φ)+k的形式,再求最值(值域); ②形如y=asin2x+bsin x+c的三角函數(shù),可先設(shè)sin x=t,化為關(guān)于t的二次函數(shù)求值域(最

9、值); ③形如y=asin xcos x+b(sin x±cos x)+c的三角函數(shù),可先設(shè)t=sin x±cos x,化為關(guān)于t的二次函數(shù)求值域(最值).  (1)函數(shù)y=lg(sin x)+的定義域為________. (2)函數(shù)y=sin2x+sin x-1的值域為 (  ) A.[-1,1] B.[-,-1] C.[-,1] D.[-1,] 答案 (1){x|2kπ<x≤+2kπ,k∈Z} (2)C 解析 (1)要使函數(shù)有意義必須有 即解得(k∈Z), ∴2kπ<x≤+2kπ,k∈Z, ∴函數(shù)的

10、定義域為{x|2kπ<x≤+2kπ,k∈Z}. (2)y=sin2x+sin x-1,令t=sin x,則有y=t2+t-1,t∈[-1,1], 畫出函數(shù)圖象如圖所示,從圖象可以看出, 當t=-及t=1時,函數(shù)取最值,代入y=t2+t-1, 可得y∈[-,1]. 題型二 三角函數(shù)的單調(diào)性、周期性 例2 寫出下列函數(shù)的單調(diào)區(qū)間及周期: (1)y=sin;(2)y=|tan x|. 思維啟迪 (1)化為y=-sin,再求單調(diào)區(qū)間及周期.(2)由y=tan x的圖象→y=|tan x|的圖象→求單調(diào)性及周期. 解 (1)y=-sin, 它的增區(qū)間是y=sin的減區(qū)間, 它

11、的減區(qū)間是y=sin的增區(qū)間. 由2kπ-≤2x-≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z. 由2kπ+≤2x-≤2kπ+,k∈Z, 得kπ+≤x≤kπ+,k∈Z. 故所給函數(shù)的減區(qū)間為,k∈Z; 增區(qū)間為,k∈Z. 最小正周期T==π. (2)觀察圖象可知,y=|tan x|的增區(qū)間是,k∈Z,減區(qū)間是,k∈Z. 最小正周期T=π. 思維升華 (1)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中,ω>0)的單調(diào)區(qū)間時,要視“ωx+φ”為一個整體,通過解不等式求解.但如果ω<0,那么一定先借助誘導公式將ω化為正數(shù),防止把單調(diào)性弄錯.

12、(2)求函數(shù)的單調(diào)區(qū)間應(yīng)遵循簡單化原則,將解析式先化簡,并注意復(fù)合函數(shù)單調(diào)性規(guī)律“同增異減”. (3)求含有絕對值的三角函數(shù)的單調(diào)性及周期時,通常要畫出圖象,結(jié)合圖象判定.  求函數(shù)y=sin+cos的周期、單調(diào)區(qū)間及最大、最小值. 解 ∵+=, ∴cos=cos =cos=sin. ∴y=2sin,周期T==. 當-+2kπ≤4x+≤+2kπ (k∈Z)時,函數(shù)單調(diào)遞增, ∴函數(shù)的遞增區(qū)間為 (k∈Z). 當+2kπ≤4x+≤+2kπ (k∈Z)時,函數(shù)單調(diào)遞減, ∴函數(shù)的遞減區(qū)間為(k∈Z). 當x=+ (k∈Z)時,ymax=2; 當x=-+ (k∈Z)時,ymi

13、n=-2. 題型三 三角函數(shù)的奇偶性和對稱性 例3 (1)已知f(x)=sin x+cos x(x∈R),函數(shù)y=f(x+φ) 的圖象關(guān)于直線x=0對稱,則φ的值為________. (2)如果函數(shù)y=3cos(2x+φ)的圖象關(guān)于點中心對稱,那么|φ|的最小值為(  ) A. B. C. D. 答案 (1) (2)A 解析 (1)f(x)=2sin, y=f(x+φ)=2sin圖象關(guān)于x=0對稱, 即f(x+φ)為偶函數(shù). ∴+φ=+kπ,k∈Z,φ=kπ+,k∈Z, 又∵|φ|≤,∴φ=. (2)由題意得3cos=3cos =3cos=0,∴+φ=

14、kπ+,k∈Z, ∴φ=kπ-,k∈Z,取k=0,得|φ|的最小值為. 思維升華 若f(x)=Asin(ωx+φ)為偶函數(shù),則當x=0時,f(x)取得最大值或最小值. 若f(x)=Asin(ωx+φ)為奇函數(shù),則當x=0時,f(x)=0. 如果求f(x)的對稱軸,只需令ωx+φ=+kπ (k∈Z),求x. 如果求f(x)的對稱中心的橫坐標,只需令ωx+φ=kπ (k∈Z)即可.  (1)若函數(shù)f(x)=sin ax+cos ax(a>0)的最小正周期為1,則它的圖象的一個對稱中心為 (  ) A.(-,0) B.(0,0) C.(-,

15、0) D.(,0) (2)設(shè)函數(shù)y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期為π,且其圖象關(guān)于直線x=對稱,則在下面四個結(jié)論:①圖象關(guān)于點(,0)對稱;②圖象關(guān)于點(,0)對稱;③在[0,]上是增函數(shù);④在[-,0]上是增函數(shù)中,所有正確結(jié)論的編號為________. 答案 (1)C (2)②④ 解析 (1)由條件得f(x)=sin(ax+), 又函數(shù)的最小正周期為1,故=1,∴a=2π, 故f(x)=sin(2πx+). 將x=-代入得函數(shù)值為0. (2)∵T=π,∴ω=2. 又2×+φ=kπ+(k∈Z),∴φ=kπ+(k∈Z). ∵

16、φ∈(-,),∴φ=,∴y=sin(2x+), 由圖象及性質(zhì)可知②④正確. 三角函數(shù)的單調(diào)性、對稱性 典例:(10分)(1)已知ω>0,函數(shù)f(x)=sin(ωx+)在(,π)上單調(diào)遞減,則ω的取值范圍是(  ) A.[,] B.[,] C.(0,] D.(0,2] (2)已知函數(shù)f(x)=2cos(ωx+φ)+b對任意實數(shù)x有f(x+)=f(-x)成立,且f()=1,則實數(shù)b的值為 (  ) A.-1 B.3 C.-1或3 D.-3 思維啟迪 (1)(,π)為函數(shù)f(x)某個單調(diào)減區(qū)間的子集;

17、 (2)由f(x+)=f(-x)可得函數(shù)的對稱軸,應(yīng)用函數(shù)在對稱軸處的性質(zhì)求解即可. 解析 (1)由<x<π得ω+<ωx+<πω+, 由題意知(ω+,πω+)?[,], ∴, ∴≤ω≤,故選A. (2)由f(x+)=f(-x)可知函數(shù)f(x)=2cos(ωx+φ)+b關(guān)于直線x=對稱,又函數(shù)f(x)在對稱軸處取得最值,故±2+b=1,∴b=-1或b=3. 答案 (1)A (2)C 溫馨提醒 (1)對于已知函數(shù)的單調(diào)區(qū)間的某一部分確定參數(shù)ω的范圍的問題,首先,明確已知的單調(diào)區(qū)間應(yīng)為函數(shù)的單調(diào)區(qū)間的子集,其次,要確定已知函數(shù)的單調(diào)區(qū)間,從而利用它們

18、之間的關(guān)系可求解. (2)函數(shù)y=Asin(ωx+φ)+b的圖象與其對稱軸的交點是最值點. 方法與技巧 1.討論三角函數(shù)性質(zhì),應(yīng)先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式. 2.函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為 . 3.對于函數(shù)的性質(zhì)(定義域、值域、單調(diào)性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉(zhuǎn)化為研究y=sin t的性質(zhì). 失誤與防范 1. 閉區(qū)間上最值或值域問題,首先要在定義域基礎(chǔ)上分析單調(diào)性,含參數(shù)的最值問題,要討論參數(shù)對最值的影響. 2. 要注意求函數(shù)y=

19、Asin(ωx+φ)的單調(diào)區(qū)間時ω的符號,盡量化成ω>0時情況. A組 專項基礎(chǔ)訓練 (時間:40分鐘) 一、選擇題 1. 下列函數(shù)中,周期為π且在[0,]上是減函數(shù)的是 (  ) A.y=sin(x+) B.y=cos(x+) C.y=sin 2x D.y=cos 2x 答案 D 解析 對于函數(shù)y=cos 2x,T=π, 當x∈[0,]時,2x∈[0,π],y=cos 2x是減函數(shù). 2. (2012·湖南)函數(shù)f(x)=sin x-cos的值域為 (  ) A.[-2,2] B.[-,] C

20、.[-1,1] D. 答案 B 解析 將函數(shù)化為y=Asin(ωx+φ)的形式后求解. ∵f(x)=sin x-cos =sin x-cos xcos +sin xsin =sin x-cos x+sin x= =sin(x∈R), ∴f(x)的值域為[-,]. 3. (2013·浙江)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=”的 (  ) A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 答案 B

21、解析 φ=?f(x)=Acos=-Asin(ωx)為奇函數(shù), ∴“f(x)是奇函數(shù)”是“φ=”的必要條件. 又f(x)=Acos(ωx+φ)是奇函數(shù)?f(0)=0?φ=+kπ(k∈Z)D/?φ=. ∴“f(x)是奇函數(shù)”不是“φ=”的充分條件. 4. 若f(x)=2cos(ωx+φ)+m對任意實數(shù)t都有f(t+)=f(-t),且f()=-1,則實數(shù)m的值等于 (  ) A.±1 B.-1或3 C.±3 D.-3或1 答案 D 解析 對任意實數(shù)t,都有f(t+)=f(-t), 則函數(shù)f(x)的圖象關(guān)于

22、x==對稱, 所以cos(ω·+φ)=±1, 即f()=±2+m=-1?m=-3或1. 5. (2012·天津)將函數(shù)f(x)=sin ωx(其中ω>0)的圖象向右平移個單位長度,所得圖象經(jīng)過點,則ω的最小值是 (  ) A. B.1 C. D.2 答案 D 解析 根據(jù)題意平移后函數(shù)的解析式為y=sin ω, 將代入得sin =0,則ω=2k,k∈Z,且ω>0, 故ω的最小值為2. 二、填空題 6. 函數(shù)y=cos(-2x)的單調(diào)減區(qū)間為________. 答案 [kπ+,kπ+]

23、(k∈Z) 解析 由y=cos(-2x)=cos(2x-)得 2kπ≤2x-≤2kπ+π(k∈Z), 故kπ+≤x≤kπ+(k∈Z). 所以函數(shù)的單調(diào)減區(qū)間為[kπ+,kπ+](k∈Z). 7. 當-≤x≤,函數(shù)y=sin x+cos x的最大值為________,最小值為________. 答案 2 -1 解析 y=2sin(x+),-≤x+≤, ∴-≤sin(x+)≤1,∴-1≤y≤2, 故ymax=2,ymin=-1. 8. 已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖, 則f()=________. 答案 

24、 解析 由題中圖象可知,此正切函數(shù)的半周期等于-=,即最小正周期為, 所以ω=2.由題意可知,圖象過定點(,0), 所以0=Atan(2×+φ),即+φ=kπ(k∈Z), 所以φ=kπ-(k∈Z), 又|φ|<,所以φ=. 又圖象過定點(0,1),所以A=1. 綜上可知,f(x)=tan(2x+), 故有f()=tan(2×+)=tan =. 三、解答題 9. 設(shè)函數(shù)f(x)=sin (-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=. (1)求φ; (2)求函數(shù)y=f(x)的單調(diào)增區(qū)間. 解 (1)令2×+φ=kπ

25、+,k∈Z, ∴φ=kπ+,k∈Z, 又-π<φ<0,則φ=-. (2)由(1)得:f(x)=sin, 令-+2kπ≤2x-≤+2kπ,k∈Z, 可解得+kπ≤x≤+kπ,k∈Z, 因此y=f(x)的單調(diào)增區(qū)間為,k∈Z. 10.設(shè)函數(shù)f(x)=sin(-)-2cos2+1. (1)求f(x)的最小正周期. (2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=1對稱,求當x∈[0,]時,y=g(x)的最大值. 解 (1)f(x)=sin cos -cos sin -cos =sin -cos =sin(-), 故f(x)的最小正周期為T==8.

26、(2)方法一 在y=g(x)的圖象上任取一點(x,g(x)), 它關(guān)于x=1的對稱點(2-x,g(x)). 由題設(shè)條件,知點(2-x,g(x))在y=f(x)的圖象上, 從而g(x)=f(2-x)=sin[(2-x)-] =sin[--] =cos(+). 當0≤x≤時,≤+≤, 因此y=g(x)在區(qū)間[0,]上的最大值為 g(x)max=cos =. 方法二 區(qū)間[0,]關(guān)于x=1的對稱區(qū)間為[,2], 且y=g(x)與y=f(x)的圖象關(guān)于直線x=1對稱, 故y=g(x)在[0,]上的最大值為 y=f(x)在[,2]上的最大值. 由(1)知f(x)=sin(-),

27、 當≤x≤2時,-≤-≤. 因此y=g(x)在[0,]上的最大值為 g(x)max=sin =. B組 專項能力提升 (時間:30分鐘) 1. 函數(shù)y=的定義域是 (  ) A.[kπ,kπ+](k∈Z) B.[2kπ,2kπ+](k∈Z) C.[-+kπ,kπ](k∈Z) D.[-+2kπ,2kπ](k∈Z) 答案 A 解析 |sin x+cos x|-1≥0?(sin x+cos x)2≥1 ?sin 2x≥0, ∴2kπ≤2x≤2kπ+π,k∈Z, 故原函數(shù)的定義域是[kπ,kπ+](k∈Z). 2. 設(shè)函數(shù)f(x)=3sin(

28、x+),若存在這樣的實數(shù)x1,x2,對任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為________. 答案 2 解析 f(x)=3sin(x+)的周期T=2π×=4, f(x1),f(x2)應(yīng)分別為函數(shù)f(x)的最小值和最大值, 故|x1-x2|的最小值為=2. 3. 已知函數(shù)f(x)=cos xsin x(x∈R),給出下列四個命題: ①若f(x1)=-f(x2),則x1=-x2; ②f(x)的最小正周期是2π; ③f(x)在區(qū)間[-,]上是增函數(shù); ④f(x)的圖象關(guān)于直線x=對稱. 其中真命題是________. 答案

29、?、邰? 解析 f(x)=sin 2x,當x1=0,x2=時, f(x1)=-f(x2),但x1≠-x2,故①是假命題; f(x)的最小正周期為π,故②是假命題; 當x∈[-,]時,2x∈[-,],故③是真命題; 因為f()=sin π=-, 故f(x)的圖象關(guān)于直線x=π對稱,故④是真命題. 4. 已知函數(shù)f(x)=sin 2x-cos 2x+1. (1)當x∈[,]時,求f(x)的最大值和最小值; (2)求f(x)的單調(diào)區(qū)間. 解 (1)f(x)=sin 2x-cos 2x+1=2sin(2x-)+1. ∵≤x≤,∴≤2x≤π,∴≤2x-≤, ∴≤sin(2x-)≤1

30、,∴1≤2sin(2x-)≤2, 于是2≤2sin(2x-)+1≤3, ∴f(x)的最大值是3,最小值是2. (2)由2kπ-≤2x-≤2kπ+,k∈Z 得2kπ-≤2x≤2kπ+,k∈Z, ∴kπ-≤x≤kπ+,k∈Z, 即f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ+],k∈Z, 同理由2kπ+≤2x-≤2kπ+,k∈Z 得f(x)的單調(diào)遞減區(qū)間為[kπ+,kπ+],k∈Z. 5. 已知a>0,函數(shù)f(x)=-2asin+2a+b,當x∈時,-5≤f(x)≤1. (1)求常數(shù)a,b的值; (2)設(shè)g(x)=f且lg g(x)>0,求g(x)的單調(diào)區(qū)間. 解 (

31、1)∵x∈,∴2x+∈. ∴sin∈, ∴-2asin∈[-2a,a]. ∴f(x)∈[b,3a+b],又∵-5≤f(x)≤1, ∴b=-5,3a+b=1,因此a=2,b=-5. (2)由(1)得,f(x)=-4sin-1, g(x)=f=-4sin-1 =4sin-1, 又由lg g(x)>0,得g(x)>1, ∴4sin-1>1,∴sin>, ∴2kπ+<2x+<2kπ+,k∈Z, 其中當2kπ+<2x+≤2kπ+,k∈Z時, g(x)單調(diào)遞增,即kπ<x≤kπ+,k∈Z, ∴g(x)的單調(diào)增區(qū)間為,k∈Z. 又∵當2kπ+<2x+<2kπ+,k∈Z時, g(x)單調(diào)遞減,即kπ+<x<kπ+,k∈Z. ∴g(x)的單調(diào)減區(qū)間為,k∈Z.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!