影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1

上傳人:仙*** 文檔編號:43051906 上傳時間:2021-11-29 格式:DOC 頁數(shù):14 大?。?76KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1_第1頁
第1頁 / 共14頁
高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1_第2頁
第2頁 / 共14頁
高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)浙江理科一輪【第五章】平面向量 第五章 5.1(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 5.1 數(shù)列的概念及簡單表示法 1. 數(shù)列的定義 按照一定順序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項. 2. 數(shù)列的分類 分類原則 類型 滿足條件 按項數(shù)分類 有窮數(shù)列 項數(shù)有限 無窮數(shù)列 項數(shù)無限 按項與項間的大小關(guān)系分類 遞增數(shù)列 an+1__>__an 其中n∈N* 遞減數(shù)列 an+1__<__an 常數(shù)列 an+1=an 按其他標(biāo)準(zhǔn)分類 有界數(shù)列 存在正數(shù)M,使|an|≤M 擺動數(shù)列 從第二項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列

2、 3. 數(shù)列的表示法 數(shù)列有三種表示法,它們分別是列表法、圖象法和解析法. 4. 數(shù)列的通項公式 如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式. 5. 已知數(shù)列{an}的前n項和Sn,則an=. 1. 判斷下面結(jié)論是否正確(請在括號中打“√”或“”) (1)所有數(shù)列的第n項都能使用公式表達. (  ) (2)根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式可能不止一個. ( √ ) (3)數(shù)列:1,0,1,0,1,0,…,通項公式只能是an=. (  ) (4)如果數(shù)列{an}的前n項和為Sn,則對?

3、n∈N*,都有an+1=Sn+1-Sn. ( √ ) (5)在數(shù)列{an}中,對于任意正整數(shù)m,n,am+n=amn+1,若a1=1,則a2=2. ( √ ) (6)若已知數(shù)列{an}的遞推公式為an+1=,且a2=1,則可以寫出數(shù)列{an}的任何一項. ( √ ) 2. 設(shè)數(shù)列{an}的前n項和Sn=n2,則a8的值為 (  ) A.15 B.16 C.49 D.64 答案 A 解析 ∵Sn=n2,∴a1=S1=1. 當(dāng)n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1. ∴an=2n-1,∴a8

4、=28-1=15. 3. 已知數(shù)列{an}的前n項和Sn滿足:Sn+Sm=Sn+m,且a1=1,那么a10等于 (  ) A.1 B.9 C.10 D.55 答案 A 解析 ∵Sn+Sm=Sn+m,a1=1,∴S1=1. 可令m=1,得Sn+1=Sn+1,∴Sn+1-Sn=1. 即當(dāng)n≥1時,an+1=1,∴a10=1. 4. (2013課標(biāo)全國Ⅰ)若數(shù)列{an}的前n項和Sn=an+,則{an}的通項公式是an=________. 答案 (-2)n-1 解析 當(dāng)n=1時,a1=1;當(dāng)n≥2時, an=Sn-Sn-1=an-an-1, 故=-2,

5、故an=(-2)n-1. 當(dāng)n=1時,也符合an=(-2)n-1. 綜上,an=(-2)n-1. 5. (2013安徽)如圖,互不相同的點A1,A2,…,An,…和B1, B2,…,Bn…分別在角O的兩條邊上,所有AnBn相互平行, 且所有梯形AnBnBn+1An+1的面積均相等.設(shè)OAn=an,若a1=1, a2=2,則數(shù)列{an}的通項公式是________. 答案 an= 解析 由已知 = =, 即 =2 由相似三角形面積比是相似比的平方知OA+OA=2OA,即a+a=2a, 因此{a}為等差數(shù)列且a=a+3(n-1)=3n-2, 故an=. 題

6、型一 由數(shù)列的前幾項求數(shù)列的通項 例1 寫出下面各數(shù)列的一個通項公式: (1)3,5,7,9,…; (2),,,,,…; (3)-1,,-,,-,,…; (4)3,33,333,3 333,…. 思維啟迪 先觀察各項的特點,然后歸納出其通項公式,要注意項與項數(shù)之間的關(guān)系,項與前后項之間的關(guān)系. 解 (1)各項減去1后為正偶數(shù),所以an=2n+1. (2)每一項的分子比分母少1,而分母組成數(shù)列21,22,23,24,…,所以an=. (3)奇數(shù)項為負,偶數(shù)項為正,故通項公式中含因子(-1)n;各項絕對值的分母組成數(shù)列1,2,3,4,…;而各項絕對值的分子組成的數(shù)列中,奇數(shù)項為1

7、,偶數(shù)項為3,即奇數(shù)項為2-1,偶數(shù)項為2+1,所以an=(-1)n. 也可寫為an= (4)將數(shù)列各項改寫為,,,,…,分母都是3,而分子分別是10-1,102-1,103-1,104-1,…, 所以an=(10n-1). 思維升華 根據(jù)所給數(shù)列的前幾項求其通項時,需仔細觀察分析,抓住其幾方面的特征:分式中分子、分母的各自特征;相鄰項的聯(lián)系特征;拆項后的各部分特征;符號特征,應(yīng)多進行對比、分析,從整體到局部多角度觀察、歸納、聯(lián)想.  (1)數(shù)列-1,7,-13,19,…的一個通項公式是an=________. (2)數(shù)列{an}的前4項是,1,,,則這個數(shù)列的一個通項公式是an=

8、________. 答案 (1)(-1)n(6n-5) (2) 解析 (1)符號問題可通過(-1)n或(-1)n+1表示,其各項的絕對值的排列規(guī)律為后面的數(shù)的絕對值總比前面的數(shù)的絕對值大6,故通項公式為an=(-1)n(6n-5). (2)數(shù)列{an}的前4項可變形為,,,,故an=. 題型二 由數(shù)列的前n項和Sn求數(shù)列的通項 例2 已知下面數(shù)列{an}的前n項和Sn,求{an}的通項公式: (1)Sn=2n2-3n; (2)Sn=3n+b. 思維啟迪 當(dāng)n=1時,由a1=S1,求a1; 當(dāng)n≥2時,由an=Sn-Sn-1消去Sn,得an+1與an的關(guān)系.轉(zhuǎn)化成由遞推關(guān)系求通

9、項. 解 (1)a1=S1=2-3=-1, 當(dāng)n≥2時,an=Sn-Sn-1 =(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5, 由于a1也適合此等式,∴an=4n-5. (2)a1=S1=3+b, 當(dāng)n≥2時,an=Sn-Sn-1 =(3n+b)-(3n-1+b)=23n-1. 當(dāng)b=-1時,a1適合此等式. 當(dāng)b≠-1時,a1不適合此等式. ∴當(dāng)b=-1時,an=23n-1; 當(dāng)b≠-1時,an= 思維升華 數(shù)列的通項an與前n項和Sn的關(guān)系是an=當(dāng)n=1時,a1若適合Sn-Sn-1,則n=1的情況可并入n≥2時的通項an;當(dāng)n=1時,a1若不適合S

10、n-Sn-1,則用分段函數(shù)的形式表示.  已知數(shù)列{an}的前n項和Sn=3n2-2n+1,則其通項公式為________________. 答案 an= 解析 當(dāng)n=1時,a1=S1=312-21+1=2; 當(dāng)n≥2時, an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1] =6n-5,顯然當(dāng)n=1時,不滿足上式. 故數(shù)列的通項公式為an= 題型三 由數(shù)列的遞推關(guān)系求數(shù)列的通項公式 例3 (1)設(shè)數(shù)列{an}中,a1=2,an+1=an+n+1,則通項an=________. (2)數(shù)列{an}中,a1=1,an+1=3an+2,則它的一個通項公式

11、為an=________. (3)在數(shù)列{an}中,a1=1,前n項和Sn=an.則{an}的通項公式為________. 思維啟迪 觀察遞推式的特點,可以利用累加(乘)或迭代法求通項公式. 答案 (1)+1 (2)23n-1-1 (3)an= 解析 (1)由題意得,當(dāng)n≥2時, an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =2+(2+3+…+n)=2+=+1. 又a1=2=+1,符合上式, 因此an=+1. (2)方法一 (累乘法) an+1=3an+2,即an+1+1=3(an+1), 即=3, 所以=3,=3,=3,…,=3. 將這些等式

12、兩邊分別相乘得=3n. 因為a1=1,所以=3n, 即an+1=23n-1(n≥1), 所以an=23n-1-1(n≥2), 又a1=1也滿足上式, 故數(shù)列{an}的一個通項公式為an=23n-1-1. 方法二 (迭代法) an+1=3an+2, 即an+1+1=3(an+1)=32(an-1+1)=33(an-2+1) =…=3n(a1+1)=23n(n≥1), 所以an=23n-1-1(n≥2), 又a1=1也滿足上式, 故數(shù)列{an}的一個通項公式為an=23n-1-1. (3)由題設(shè)知,a1=1. 當(dāng)n>1時,an=Sn-Sn-1=an-an-1. ∴=.

13、 ∴=,…,=, =,=3. 以上n-1個式子的等號兩端分別相乘,得到=, 又∵a1=1,∴an=. 思維升華 已知數(shù)列的遞推關(guān)系,求數(shù)列的通項時,通常用累加、累乘、構(gòu)造法求解. 當(dāng)出現(xiàn)an=an-1+m時,構(gòu)造等差數(shù)列;當(dāng)出現(xiàn)an=xan-1+y時,構(gòu)造等比數(shù)列;當(dāng)出現(xiàn)an=an-1+f(n)時,用累加法求解;當(dāng)出現(xiàn)=f(n)時,用累乘法求解.  (1)已知數(shù)列{an}滿足a1=1,an=an-1(n≥2),則an=________. (2)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1(n∈N*),則a5等于 (  ) A.-16 B.16 C.31

14、 D.32 答案 (1) (2)B 解析 (1)∵an=an-1 (n≥2), ∴an-1=an-2,…,a2=a1. 以上(n-1)個式子相乘得 an=a1…==. (2)當(dāng)n=1時,S1=2a1-1,∴a1=1. 當(dāng)n≥2時,Sn-1=2an-1-1, ∴an=2an-2an-1, ∴an=2an-1. ∴{an}是等比數(shù)列且a1=1,q=2, 故a5=a1q4=24=16. 數(shù)列問題中的函數(shù)思想 典例:(14分)已知數(shù)列{an}. (1)若an=n2-5n+4, ①數(shù)列中有多少項是負數(shù)? ②n為何值時,an有最小值?并求出最小值. (2

15、)若an=n2+kn+4且對于n∈N*,都有an+1>an.求實數(shù)k的取值范圍. 思維啟迪 (1)求使an<0的n值;從二次函數(shù)看an的最小值.(2)數(shù)列是一類特殊函數(shù),通項公式可以看作相應(yīng)的解析式f(n)=n2+kn+4.f(n)在N*上單調(diào)遞增,但自變量不連續(xù).從二次函數(shù)的對稱軸研究單調(diào)性. 規(guī)范解答 解 (1)①由n2-5n+4<0,解得1

16、 [8分] (2)由an+1>an知該數(shù)列是一個遞增數(shù)列,又因為通項公式an=n2+kn+4,可以看作是關(guān)于n的二次函數(shù),考慮到n∈N*,所以-<,即得k>-3. [14分] 溫馨提醒 (1)本題給出的數(shù)列通項公式可以看做是一個定義在正整數(shù)集N*上的二次函數(shù),因此可以利用二次函數(shù)的對稱軸來研究其單調(diào)性,得到實數(shù)k的取值范圍,使問題得到解決. (2)在利用二次函數(shù)的觀點解決該題時,一定要注意二次函數(shù)對稱軸位置的選?。? (3)易錯分析:本題易錯答案為k>-2.原因是忽略了數(shù)列作為函數(shù)的特殊性,即自變量是正整數(shù). 方法與技巧 1. 求數(shù)列通項或指定項.通常用觀察法(對

17、于交錯數(shù)列一般用(-1)n或(-1)n+1來區(qū)分奇偶項的符號);已知數(shù)列中的遞推關(guān)系,一般只要求寫出數(shù)列的前幾項,若求通項可用歸納、猜想和轉(zhuǎn)化的方法. 2. 強調(diào)an與Sn的關(guān)系:an=. 3. 已知遞推關(guān)系求通項:對這類問題的要求不高,但試題難度較難把握.一般有二種常見思路: (1)算出前幾項,再歸納、猜想; (2)利用累加或累乘法可求數(shù)列的通項公式. 失誤與防范 1. 數(shù)列是一種特殊的函數(shù),在利用函數(shù)觀點研究數(shù)列時,一定要注意自變量的取值,如數(shù)列an=f(n)和函數(shù)y=f(x)的單調(diào)性是不同的. 2. 數(shù)列的通項公式不一定唯一. A組 專項基礎(chǔ)訓(xùn)練 (時間:40分鐘)

18、 一、選擇題 1. 數(shù)列0,1,0,-1,0,1,0,-1,…的一個通項公式是an等于 (  ) A. B.cos C.cos π D.cos π 答案 D 解析 令n=1,2,3,…逐一驗證四個選項,易得D正確. 2. 數(shù)列{an}的前n項和為Sn,若a1=1,an+1=3Sn(n≥1),則a6等于 (  ) A.344 B.344+1 C.45 D.45+1 答案 A 解析 當(dāng)n≥1時,an+1=3Sn,則an+2=3Sn+1, ∴an+2-an+1=3Sn+1-3Sn=3an+1,即an+2=4an+1

19、, ∴該數(shù)列從第二項開始是以4為公比的等比數(shù)列. 又a2=3S1=3a1=3,∴an= ∴當(dāng)n=6時,a6=346-2=344. 3. 若數(shù)列{an}的通項公式是an=(-1)n(3n-2),則a1+a2+…+a10等于 (  ) A.15 B.12 C.-12 D.-15 答案 A 解析 由題意知,a1+a2+…+a10 =-1+4-7+10+…+(-1)10(310-2) =(-1+4)+(-7+10)+…+[(-1)9(39-2)+(-1)10(310-2)] =35=15. 4. 已知數(shù)列{an}的通項公式為an=()n-1-()n-1

20、,則數(shù)列{an} (  ) A.有最大項,沒有最小項 B.有最小項,沒有最大項 C.既有最大項又有最小項 D.既沒有最大項也沒有最小項 答案 C 解析 ∵數(shù)列{an}的通項公式為an=()n-1-()n-1, 令t=()n-1,t∈(0,1],t是減函數(shù), 則an=t2-t=(t-)2-, 由復(fù)合函數(shù)單調(diào)性知an先遞增后遞減. 故有最大項和最小項,選C. 5. 若Sn為數(shù)列{an}的前n項和,且Sn=,則等于 (  ) A. B. C. D.30 答案 D 解析 當(dāng)n≥2時,an=Sn-Sn-1 =-=, 所以=56=30.

21、 二、填空題 6. 已知數(shù)列{},則0.98是它的第________項. 答案 7 解析?。?.98=,∴n=7. 7. 無窮數(shù)列1,2,2,3,3,3,4,4,4,4,5,…的首項是1,隨后兩項都是2,接下來3項都是3,再接下來4項都是4,…,以此類推.記該數(shù)列為{an},若an-1=7,an=8,則n=________. 答案 29 解析 按題目給出數(shù)列的規(guī)律發(fā)現(xiàn),1個1,2個2,3個3,4個4,…,n個n,an-1=7,an=8,則第n-1項是出現(xiàn)7個組合的最后一個數(shù),所以n-1=1+2+3+4+5+6+7=28,n=29. 8. 已知{an}是遞增數(shù)列,且對于任意的n∈N

22、*,an=n2+λn恒成立,則實數(shù)λ的取值范圍是________. 答案 (-3,+∞) 解析 方法一 (定義法) 因為{an}是遞增數(shù)列,所以對任意的n∈N*,都有an+1>an, 即(n+1)2+λ(n+1)>n2+λn,整理,得 2n+1+λ>0,即λ>-(2n+1).(*) 因為n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3. 方法二 (函數(shù)法) 設(shè)f(n)=an=n2+λn,其圖象的對稱軸為直線n=-, 要使數(shù)列{an}為遞增數(shù)列,只需使定義在正整數(shù)上的函數(shù)f(n)為增函數(shù), 故只需滿足f(1)-3. 三、解答題 9.

23、 數(shù)列{an}的通項公式是an=n2-7n+6. (1)這個數(shù)列的第4項是多少? (2)150是不是這個數(shù)列的項?若是這個數(shù)列的項,它是第幾項? (3)該數(shù)列從第幾項開始各項都是正數(shù)? 解 (1)當(dāng)n=4時,a4=42-47+6=-6. (2)令an=150,即n2-7n+6=150, 解得n=16或n=-9(舍去), 即150是這個數(shù)列的第16項. (3)令an=n2-7n+6>0,解得n>6或n<1(舍). 故數(shù)列從第7項起各項都是正數(shù). 10.已知數(shù)列{an}的通項公式為an=,試判斷此數(shù)列是否有最大項?若有,第幾項最大,最大項是多少?若沒有,說明理由. 解 an+

24、1-an=-=, 當(dāng)n<8時,an+1-an>0,即an+1>an; 當(dāng)n=8時,an+1-an=0,即an+1=an; 當(dāng)n>8時,an+1-an<0,即an+1a10>a11>…, 故數(shù)列{an}有最大項,為第8項和第9項, 且a8=a9==. B組 專項能力提升 (時間:30分鐘) 1. 跳格游戲:如圖,人從格子外只能進入第1個格子,在格子中每次可向前跳1格或2格,那么人從格子外跳到第8個格子的方法種數(shù)為 (  ) A.8種 B.13種 C.21種 D.34種 答案 C 解析 設(shè)跳到第

25、n個格子的方法種數(shù)有an,則到達第n個格子的方法有兩類: ①向前跳1格到達第n個格子,方法種數(shù)為an-1; ②向前跳2格到達第n個格子,方法種數(shù)為an-2,則an=an-1+an-2, 由數(shù)列的遞推關(guān)系得到數(shù)列的前8項分別是1,1,2,3,5,8,13,21. ∴跳到第8個格子的方法種數(shù)是21.故選C. 2. 數(shù)列{an}滿足an+an+1= (n∈N*),a2=2,Sn是數(shù)列{an}的前n項和,則S21為(  ) A.5 B. C. D. 答案 B 解析 ∵an+an+1=(n∈N*), ∴a1=-a2=-2,a2=2,a3=-2,a4=2,…, 故

26、a2n=2,a2n-1=-2. ∴S21=10+a1=5+-2=. 3. 若數(shù)列{n(n+4)()n}中的最大項是第k項,則k=________. 答案 4 解析 由題意得, 所以,由k∈N*可得k=4. 4. 已知數(shù)列{an}滿足前n項和Sn=n2+1,數(shù)列{bn}滿足bn=,且前n項和為Tn,設(shè)cn=T2n+1-Tn. (1)求數(shù)列{bn}的通項公式; (2)判斷數(shù)列{cn}的增減性. 解 (1)a1=2,an=Sn-Sn-1=2n-1(n≥2). ∴bn=. (2)∵cn=bn+1+bn+2+…+b2n+1 =++…+, ∴cn+1-cn=+- =-=<0,

27、 ∴{cn}是遞減數(shù)列. 5. 設(shè)數(shù)列{an}的前n項和為Sn.已知a1=a,an+1=Sn+3n,n∈N*. (1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項公式; (2)若an+1≥an,n∈N*,求a的取值范圍. 解 (1)依題意,Sn+1-Sn=an+1=Sn+3n, 即Sn+1=2Sn+3n, 由此得Sn+1-3n+1=2(Sn-3n). 即bn+1=2bn,又b1=S1-3=a-3, 因此,所求通項公式為 bn=Sn-3n=(a-3)2n-1,n∈N*. (2)由(1)知Sn=3n+(a-3)2n-1,n∈N*, 于是,當(dāng)n≥2時, an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2 =23n-1+(a-3)2n-2, an+1-an=43n-1+(a-3)2n-2 =2n-2[12()n-2+a-3], 當(dāng)n≥2時,an+1≥an?12()n-2+a-3≥0?a≥-9. 又a2=a1+3>a1. 綜上,所求的a的取值范圍是[-9,+∞).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!