高考數(shù)學(xué)理一輪資源庫 第3章學(xué)案14
《高考數(shù)學(xué)理一輪資源庫 第3章學(xué)案14》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理一輪資源庫 第3章學(xué)案14(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料 學(xué)案14 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 導(dǎo)學(xué)目標(biāo): 1.了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(多項(xiàng)式函數(shù)一般不超過三次).2.了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件,會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(多項(xiàng)式函數(shù)一般不超過三次)及最大(最小)值. 自主梳理 1.導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系: (1)對于函數(shù)y=f(x),如果在某區(qū)間上f′(x)>0,那么f(x)為該區(qū)間上的________; 如果在某區(qū)間上f′(x)<0,那么f(x)為該區(qū)間上的________. (2)若
2、在(a,b)的任意子區(qū)間內(nèi)f′(x)都不恒等于0,f′(x)≥0?f(x)在(a,b)上為____函數(shù),若在(a,b)上,f′(x)≤0,?f(x)在(a,b)上為____函數(shù). 2.函數(shù)的極值 (1)判斷f(x0)是極值的方法 一般地,當(dāng)函數(shù)f(x)在點(diǎn)x0處連續(xù)時(shí), ①如果在x0附近的左側(cè)________,右側(cè)________,那么f(x0)是極大值; ②如果在x0附近的左側(cè)________,右側(cè)________,那么f(x0)是極小值. (2)求可導(dǎo)函數(shù)極值的步驟 ①求f′(x); ②求方程________的根; ③檢查f′(x)在方程________的根左右值的符號.
3、如果左正右負(fù),那么f(x)在這個(gè)根處取得________;如果左負(fù)右正,那么f(x)在這個(gè)根處取得________. 3.求函數(shù)y=f(x)在[a,b]上的最大值與最小值的步驟: (1)求函數(shù)y=f(x)在(a,b)上的________; (2)將函數(shù)y=f(x)的各極值與________比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. 自我檢測 1.(2010·濟(jì)寧一模)已知函數(shù)y=f(x),其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則關(guān)于y=f(x)下列說法正確的是________(填序號). ①在(-∞,0)上為減函數(shù); ②在x=0處取極小值; ③在(4,+∞
4、)上為減函數(shù); ④在x=2處取極大值. 2.(2009·廣東改編)函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間為______________. 3.函數(shù)f(x)=x3+ax-2在區(qū)間(1,+∞)上是增函數(shù),則a的取值范圍為______________. 4.設(shè)p:f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,q:m≥,則p是q的________條件. 5.(2010·福州模擬)已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處取極值10,則f(2)=________. 探究點(diǎn)一 函數(shù)的單調(diào)性 例1 已知a∈R,函數(shù)f(x)=(-x2+ax)e
5、x(x∈R,e為自然對數(shù)的底數(shù)). (1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍; (3)函數(shù)f(x)能否為R上的單調(diào)函數(shù),若能,求出a的取值范圍;若不能,請說明理由. 變式遷移1 (2009·浙江)已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R). (1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是-3,求a,b的值; (2)若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍. 探究點(diǎn)二 函數(shù)的極值 例2 若函數(shù)f(x)=ax3-bx
6、+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-. (1)求函數(shù)f(x)的解析式; (2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍. 變式遷移2 設(shè)x=1與x=2是函數(shù)f(x)=aln x+bx2+x的兩個(gè)極值點(diǎn). (1)試確定常數(shù)a和b的值; (2)試判斷x=1,x=2是函數(shù)f(x)的極大值點(diǎn)還是極小值點(diǎn),并說明理由. 探究點(diǎn)三 求閉區(qū)間上函數(shù)的最值 例3 已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,若x=時(shí),y=f(x)有極值. (1)求a,b,c的值; (2)求y=f(x)在[
7、-3,1]上的最大值和最小值. 變式遷移3 已知函數(shù)f(x)=ax3+x2+bx(其中常數(shù)a,b∈R),g(x)=f(x)+f′(x)是奇函數(shù). (1)求f(x)的表達(dá)式; (2)討論g(x)的單調(diào)性,并求g(x)在區(qū)間[1,2]上的最大值和最小值. 分類討論求函數(shù)的單調(diào)區(qū)間 例 (14分)(2009·遼寧)已知函數(shù)f(x)=x2-ax+(a-1)ln x,a>1. (1)討論函數(shù)f(x)的單調(diào)性; (2)證明:若a<5,則對任意x1,x2∈(0,+∞),x1≠x2,有>-1. 【答題模板】 (1)解 f(x)的
8、定義域?yàn)?0,+∞). f′(x)=x-a+==.[3分] ①若a-1=1,即a=2時(shí),f′(x)=. 故f(x)在(0,+∞)上單調(diào)遞增. ②若a-1<1,而a>1,故1<a<2時(shí),則當(dāng)x∈(a-1,1)時(shí),f′(x)<0;當(dāng)x∈(0,a-1)及x∈(1,+∞)時(shí),f′(x)>0,故f(x)在(a-1,1)上單調(diào)遞減,在(0,a-1),(1,+∞)上單調(diào)遞增. ③若a-1>1,即a>2時(shí),同理可得f(x)在(1,a-1)上單調(diào)遞減, 在(0,1),(a-1,+∞)上單調(diào)遞增.[7分] (2)證明 考慮函數(shù)g(x)=f(x)+x=x
9、2-ax+(a-1)ln x+x. 則g′(x)=x-(a-1)+≥2-(a-1) =1-(-1)2. 由于1<a<5,故g′(x)>0,即g(x)在(0,+∞)上單調(diào)遞增, 從而當(dāng)x1>x2>0時(shí),有g(shù)(x1)-g(x2)>0, 即f(x1)-f(x2)+x1-x2>0, 故>-1.[12分] 當(dāng)0<x1<x2時(shí),有=>-1. 綜上,若a<5,對任意x1,x2∈(0,+∞),x1≠x2有>-1.[14分] 【突破思維障礙】 (1)討論函數(shù)的單調(diào)區(qū)間的關(guān)鍵是討論導(dǎo)數(shù)大于0或小于0的不等式的解集,一
10、般就是歸結(jié)為一個(gè)一元二次不等式的解集的討論,在能夠通過因式分解得到導(dǎo)數(shù)等于0的根的情況下,根的大小是分類的標(biāo)準(zhǔn); (2)利用導(dǎo)數(shù)解決不等式問題的主要方法就是構(gòu)造函數(shù),通過函數(shù)研究函數(shù)的性質(zhì)進(jìn)而解決不等式問題. 1.求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法: (1)確定函數(shù)f(x)的定義域; (2)求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實(shí)根; (3)把函數(shù)f(x)的間斷點(diǎn)(即f(x)的無定義點(diǎn))的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來,然后用這些點(diǎn)把函數(shù)f(x)的定義區(qū)間分成若干個(gè)小區(qū)間; (4)確定f′(x)在各個(gè)開區(qū)間內(nèi)的符號,根據(jù)f′(x)的符號判定函數(shù)f
11、(x)在每個(gè)相應(yīng)小開區(qū)間內(nèi)的增減性. 2.可導(dǎo)函數(shù)極值存在的條件: (1)可導(dǎo)函數(shù)的極值點(diǎn)x0一定滿足f′(x0)=0,但當(dāng)f′(x1)=0時(shí),x1不一定是極值點(diǎn).如f(x)=x3,f′(0)=0,但x=0不是極值點(diǎn). (2)可導(dǎo)函數(shù)y=f(x)在點(diǎn)x0處取得極值的充要條件是f′(x0)=0,且在x0左側(cè)與右側(cè)f′(x)的符號不同. 3.函數(shù)的最大值、最小值是比較整個(gè)定義區(qū)間的函數(shù)值得出來的,函數(shù)的極值是比較極值點(diǎn)附近的函數(shù)值得出來的.函數(shù)的極值可以有多有少,但最值只有一個(gè),極值只能在區(qū)間內(nèi)取得,最值則可以在端點(diǎn)取得,有極值的未必有最值,有最值的未必有極值,極值可能成為最值,最值只要不
12、在端點(diǎn)必定是極值. 4.求函數(shù)的最值以導(dǎo)數(shù)為工具,先找到極值點(diǎn),再求極值和區(qū)間端點(diǎn)函數(shù)值,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. (滿分:90分) 一、填空題(每小題6分,共48分) 1.(2011·泰州實(shí)驗(yàn)一模)函數(shù)f(x)=x-ln x的單調(diào)減區(qū)間為________. 2.已知函數(shù)f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值是______. 3.函數(shù)f(x)的定義域?yàn)殚_區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值點(diǎn)的個(gè)數(shù)為________.
13、 4.(2011·蘇州模擬)若函數(shù)y=a(x3-x)在區(qū)間上為減函數(shù),則a的取值范圍為________. 5.設(shè)a∈R,若函數(shù)y=eax+3x,x∈R有大于零的極值點(diǎn),則a的取值范圍為________. 6.(2011·聊城一模)若a>2,則函數(shù)f(x)=x3-ax2+1在區(qū)間(0,2)上有________個(gè)零點(diǎn). 7.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,給出以下結(jié)論: ①函數(shù)f(x)在(-2,-1)和(1,2)上是單調(diào)遞增函數(shù); ②函數(shù)f(x)在(-2,0)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù); ③函數(shù)f(x)在x=-1處
14、取得極大值,在x=1處取得極小值; ④函數(shù)f(x)在x=0處取得極大值f(0). 則正確命題的序號是________.(填上所有正確命題的序號). 8.已知函數(shù)f(x)=x3+mx2+(m+6)x+1既存在極大值又存在極小值,則實(shí)數(shù)m的取值范圍為________. 二、解答題(共42分) 9.(12分)求函數(shù)f(x)=的極值. 10.(14分)(2010·秦皇島模擬)已知a為實(shí)數(shù),且函數(shù)f(x)=(x2-4)(x-a). (1)求導(dǎo)函數(shù)f′(x); (2)若f′(-1)=0,求函數(shù)f(x)在[-2,2]上的最大值、最小值. 11.(1
15、6分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(diǎn)(-1,-6),且函數(shù)g(x)=f′(x)+6x的圖象關(guān)于y軸對稱. (1)求m,n的值及函數(shù)y=f(x)的單調(diào)區(qū)間; (2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值. 答案 自主梳理 1.(1)增函數(shù) 減函數(shù) (2)增 減 2.(1)①f′(x)>0 f′(x)<0?、趂′(x)<0 f′(x)>0 (2)②f′(x)=0 ③f′(x)=0 極大值 極小值 3.(1)極值 (2)f(a),f(b) 自我檢測 1.③ 2.(2,+∞) 3.[-3,+∞)
16、4.充要 5.18 課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 (1)一般地,涉及到函數(shù)(尤其是一些非常規(guī)函數(shù))的單調(diào)性問題,往往可以借助導(dǎo)數(shù)這一重要工具進(jìn)行求解.函數(shù)在定義域內(nèi)存在單調(diào)區(qū)間,就是不等式f′(x)>0或f′(x)<0在定義域內(nèi)有解.這樣就可以把問題轉(zhuǎn)化為解不等式問題. (2)已知函數(shù)在某個(gè)區(qū)間上單調(diào)求參數(shù)問題,通常是解決一個(gè)恒成立問題,方法有①分離參數(shù)法,②利用二次函數(shù)中恒成立問題解決. (3)一般地,可導(dǎo)函數(shù)f(x)在(a,b)上是增(或減)函數(shù)的充要條件是:對任意x∈(a,b),都有f′(x)≥0(或f′(x)≤0),且f′(x)在(a,b)的任何子區(qū)間內(nèi)都不恒等于零.
17、特別是在已知函數(shù)的單調(diào)性求參數(shù)的取值范圍時(shí),要注意“等號”是否可以取到. 解 (1)當(dāng)a=2時(shí),f(x)=(-x2+2x)ex, ∴f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex. 令f′(x)>0,即(-x2+2)ex>0, ∵ex>0,∴-x2+2>0, 解得-<x<. ∴函數(shù)f(x)的單調(diào)遞增區(qū)間是(-,). (2)∵函數(shù)f(x)在(-1,1)上單調(diào)遞增, ∴f′(x)≥0對x∈(-1,1)都成立. ∵f′(x)=[-x2+(a-2)x+a]ex, ∴[-x2+(a-2)x+a]ex≥0對x∈(-1,1)都
18、成立. ∵ex>0, ∴-x2+(a-2)x+a≥0對x∈(-1,1)都成立, 即x2-(a-2)x-a≤0對x∈(-1,1)恒成立. 設(shè)h(x)=x2-(a-2)x-a, 只需滿足,解得a≥. (3)若函數(shù)f(x)在R上單調(diào)遞減, 則f′(x)≤0對x∈R都成立, 即[-x2+(a-2)x+a]ex≤0對x∈R都成立. ∵ex>0,∴x2-(a-2)x-a≥0對x∈R都成立. ∴Δ=(a-2)2+4a≤0,即a2+4≤0,這是不可能的. 故函數(shù)f(x)不可能在R上單調(diào)遞減. 若函數(shù)f(x)在R上單調(diào)遞增,則f′(x)≥0對x∈R都成立,即[-x2+(a-2
19、)x+a]ex≥0對x∈R都成立. ∵ex>0,∴x2-(a-2)x-a≤0對x∈R都成立. 而x2-(a-2)x-a≤0不可能恒成立, 故函數(shù)f(x)不可能在R上單調(diào)遞增. 綜上可知函數(shù)f(x)不可能是R上的單調(diào)函數(shù). 變式遷移1 解 (1)由題意得f′(x)=3x2+2(1-a)x-a(a+2), 又, 解得b=0,a=-3或a=1. (2)由f′(x)=0,得x1=a,x2=-. 又f(x)在(-1,1)上不單調(diào), 即或 解得或 所以a的取值范圍為(-5,-)∪(-,1). 例2 解題導(dǎo)引 本題研究函數(shù)的極值問題.利用待定系數(shù)法,由極值點(diǎn)的導(dǎo)數(shù)值為0,以及
20、極大值、極小值,建立方程組求解.判斷函數(shù)極值時(shí)要注意導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),所以求極值時(shí)一定要判斷導(dǎo)數(shù)為0的點(diǎn)左側(cè)與右側(cè)的單調(diào)性,然后根據(jù)極值的定義判斷是極大值還是極小值. 解 (1)由題意可知f′(x)=3ax2-b. 于是,解得 故所求的函數(shù)解析式為f(x)=x3-4x+4. (2)由(1)可知f′(x)=x2-4=(x-2)(x+2). 令f′(x)=0得x=2或x=-2, 當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表所示: x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) 單調(diào)遞增 極大
21、值 單調(diào)遞減 極小值 單調(diào)遞增 因此,當(dāng)x=-2時(shí), f(x)有極大值, 當(dāng)x=2時(shí),f(x)有極小值-, 所以函數(shù)的大致圖象如圖, 故實(shí)數(shù)k的取值范圍為 (-,). 變式遷移2 解 (1)f′(x)=+2bx+1, ∴.解得a=-,b=-. (2)f′(x)=-+(-)+1=-. 函數(shù)定義域?yàn)?0,+∞),列表 x (0,1) 1 (1,2) 2 (2,+∞) f′(x) - 0 + 0 - f(x) 單調(diào)遞減 極小值 單調(diào)遞增 極大值 單調(diào)遞減 ∴x=1是f(x)的極小值點(diǎn),x=2是f(x)的極大值點(diǎn). 例3 解題導(dǎo)引
22、設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),求f(x)在[a,b]上的最大值和最小值的步驟: (1)求函數(shù)y=f(x)在(a,b)內(nèi)的極值. (2)將函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a)、f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. 解 (1)由f(x)=x3+ax2+bx+c, 得f′(x)=3x2+2ax+b, 當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0;① 當(dāng)x=時(shí),y=f(x)有極值,則f′=0, 可得4a+3b+4=0.② 由①②解得a=2,b=-4, 又切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5
23、. (2)由(1),得f(x)=x3+2x2-4x+5, ∴f′(x)=3x2+4x-4. 令f′(x)=0,得x=-2或x=, ∴f′(x)<0的解集為,即為f(x)的減區(qū)間. [-3,-2)、是函數(shù)的增區(qū)間. 又f(-3)=8,f(-2)=13,f=,f(1)=4, ∴y=f(x)在[-3,1]上的最大值為13,最小值為. 變式遷移3 解 (1)由題意得f′(x)=3ax2+2x+b. 因此g(x)=f(x)+f′(x)=ax3+(3a+1)x2+(b+2)x+b. 因?yàn)楹瘮?shù)g(x)是奇函數(shù), 所以g(-x)=-g(x),即對任意實(shí)數(shù)x, 有a(-x)3+(3
24、a+1)(-x)2+(b+2)(-x)+b =-[ax3+(3a+1)x2+(b+2)x+b], 從而3a+1=0,b=0,解得a=-,b=0, 因此f(x)的表達(dá)式為f(x)=-x3+x2. (2)由(1)知g(x)=-x3+2x, 所以g′(x)=-x2+2, 令g′(x)=0, 解得x1=-,x2=, 則當(dāng)x<-或x>時(shí),g′(x)<0, 從而g(x)在區(qū)間(-∞,-),(,+∞)上是減函數(shù); 當(dāng)-<x<時(shí),g′(x)>0, 從而g(x)在區(qū)間(-,)上是增函數(shù). 由前面討論知,g(x)在區(qū)間[1,2]上的最大值與最小值只能在x
25、=1,,2時(shí)取得, 而g(1)=,g()=,g(2)=. 因此g(x)在區(qū)間[1,2]上的最大值為g()=, 最小值為g(2)=. 課后練習(xí)區(qū) 1.(0,1) 2.-37 3.1 4.(0,+∞) 5.a(chǎn)<-3 解析 ∵y′=aeax+3, 由y′=0得x=ln(-), ∴->0,即a<0. 又∵極值點(diǎn)大于零,即x>0,∴, 得a<-3. 6.1 解析 f′(x)=x2-2ax=x(x-2a)=0?x1=0,x2=2a>4,易知f(x)在(0,2)上為減函數(shù),且f(0)=1>0,f(2)=-4a<0,由零點(diǎn)判定定理知,在
26、函數(shù)f(x)=x3-ax2+1在區(qū)間(0,2)上恰好有1個(gè)零點(diǎn). 7.②④ 解析 觀察函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象,由單調(diào)性、極值與導(dǎo)數(shù)值的關(guān)系直接判斷. 8.(-∞,-3)∪(6,+∞) 解析 f′(x)=3x2+2mx+m+6=0有兩個(gè)不等實(shí)根,則Δ=4m2-12×(m+6)>0, ∴m>6或m<-3. 9.解 f′(x)=()′=,由f′(x)=0得x=-2,1.……………(4分) 當(dāng)x∈(-∞,-2)時(shí)f′(x)<0,當(dāng)x∈(-2,1)時(shí)f′(x)>0,故x=-2是函數(shù)的極小值點(diǎn),故f(x)的極小值為f(-2)=-;…………
27、……………………………………………………(8分) 當(dāng)x∈(-2,1)時(shí)f′(x)>0,當(dāng)x∈(1,+∞)時(shí)f′(x)<0, 故x=1是函數(shù)的極大值點(diǎn), 所以f(x)的極大值為f(1)=1.……………………………………………………………(12分) 10.解 (1)由f(x)=x3-ax2-4x+4a, 得f′(x)=3x2-2ax-4.…………………………………………………………………(4分) (2)因?yàn)閒′(-1)=0,所以a=, 所以f(x)=x3-x2-4x+2,f′(x)=3x2-x-4. 又f′(x)=0,所以x=或x=-1. 又f=-,f(-1)=,
28、f(-2)=0,f(2)=0, 所以f(x)在[-2,2]上的最大值、最小值分別為、-.………………………………(14分) 11.解 (1)由函數(shù)f(x)圖象過點(diǎn)(-1,-6), 得m-n=-3.① 由f(x)=x3+mx2+nx-2, 得f′(x)=3x2+2mx+n, 則g(x)=f′(x)+6x=3x2+(2m+6)x+n. 而g(x)的圖象關(guān)于y軸對稱, 所以-=0. 所以m=-3,代入①,得n=0.…………………………………………………………(5分) 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>0,得x>2或x<0, 故f(
29、x)的單調(diào)遞增區(qū)間是(-∞,0)∪(2,+∞); 由f′(x)<0,得0<x<2, 故f(x)的單調(diào)遞減區(qū)間是(0,2).…………………………………………………………(8分) (2)由(1)得f′(x)=3x(x-2), 令f′(x)=0,得x=0或x=2. 當(dāng)x變化時(shí),f′(x)、f(x)的變化情況如下表: x (-∞,0) 0 (0,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) 極大值 極小值 ……………………………………………………………………………………………(12分) 由此可得: 當(dāng)0<a<1時(shí),f(x)在(a-1,a+1)內(nèi)有極大值f(0)=-2,無極小值; 當(dāng)a=1時(shí),f(x)在(a-1,a+1)內(nèi)無極值; 當(dāng)1<a<3時(shí),f(x)在(a-1,a+1)內(nèi)有極小值f(2)=-6,無極大值; 當(dāng)a≥3時(shí),f(x)在(a-1,a+1)內(nèi)無極值.……………………………………………(14分) 綜上得:當(dāng)0<a<1時(shí),f(x)有極大值-2,無極小值; 當(dāng)1<a<3時(shí),f(x)有極小值-6,無極大值; 當(dāng)a=1或a≥3時(shí),f(x)無極值.………………………………………………………(16分)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一章-CFD的基本原理-2010
- 糖尿病腎病慢性腎衰竭患者的護(hù)理
- -優(yōu)秀課件--主講:河北廣播電視大學(xué)經(jīng)濟(jì)系-任岫林
- (人教部編版)精致ppt 《愚公移山》省優(yōu)獲獎(jiǎng)?wù)n件
- 蓋章動(dòng)畫素材————合格優(yōu)秀通過批準(zhǔn)已驗(yàn)已審核等標(biāo)記紅色戳記可任意編輯
- 農(nóng)業(yè)地域類型公開課湘教版
- 一年級下冊語文課件語文園地人教部編版20
- 小學(xué)數(shù)學(xué)-六年級奧數(shù)舉一反三同步教程教案-教師版課件
- 化工安全工程課件 第五章-壓力容器安全
- 第二章高等教育的
- 一年級下冊道德與法治我不拖拉部編版-課件2
- 六年級道德與法治課件《多元文化-多樣魅力》多彩的世界文化-部編版
- 觀念形象設(shè)計(jì)ppt課件
- 創(chuàng)意畢業(yè)答辯演示模板課件
- 孫思邈養(yǎng)生之道課件