《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測): 專題2.10 函數(shù)的綜合問題與實(shí)際應(yīng)用練》由會員分享,可在線閱讀,更多相關(guān)《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測): 專題2.10 函數(shù)的綜合問題與實(shí)際應(yīng)用練(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
第10節(jié) 函數(shù)的綜合問題與實(shí)際應(yīng)用
A基礎(chǔ)鞏固訓(xùn)練
1.【20xx東北三校二模】已知偶函數(shù)的定義域?yàn)?,若為奇函?shù),且,則的值為( )
A. -3 B. -2 C. 2 D. 3
【答案】D
2. 衣柜里的樟腦丸,隨著時間會揮發(fā)而體積縮小,剛放進(jìn)的新丸體積為,經(jīng)過天后體積與天數(shù)的關(guān)系式為:,若新丸經(jīng)過50天后,體積變?yōu)?;若一個新丸體積變?yōu)?,則需經(jīng)過的天數(shù)為
A.75天 B.100天 C.125天 D.150天
【答案】A.
【解析】由題意,得,解得;令,即,
即需經(jīng)過的天數(shù)為75天.
3.某種商品前兩年每年遞增
2、20%,后兩年每年遞減20%,則四年后的價格與原來的價格比較,變化情況是( )
A. 減少% B. 增加% C. 減少9.5% D. 不增不減
【答案】A
【解析】設(shè)原來的商品價格為1個單位,則四年后的價格為:,減少了%,故選A.
4.【20xx河北唐山二模】函數(shù), 的最小值為0,則的取值范圍是( )
A. B. C. D.
【答案】D
【解析】因?yàn)樵谏蠁握{(diào)遞減,且,所以;故選D.
5.【20xx安徽池州4月聯(lián)考】已知函數(shù)的定義域?yàn)椋覞M足下列三個條件:
①對任意的,當(dāng)時,都有;
②;
③
3、是偶函數(shù);
若, , ,則的大小關(guān)系正確的是( )
A. B. C. D.
【答案】B
B能力提升訓(xùn)練
1.【20xx河南豫南九??荚u】若函數(shù)的兩個零點(diǎn)是,則( )
A. B. C. D. 以上都不對
【答案】C
【解析】
由題設(shè)可得,不妨設(shè),畫出方程兩邊函數(shù)的圖像如圖,結(jié)合圖像可知,且, ,以上兩式兩邊相減可得,所以,應(yīng)選答案C。
2.某輛汽車每次加油都把油箱加滿,下表記錄了該車相鄰兩次加油時的情況.
加油時間
加油量(升)
加油時的累計(jì)里程(千米)
5月1日
12
35 000
5月15日
4、48
35 600
注:“累計(jì)里程”指汽車從出廠開始累計(jì)行駛的路程.
在這段時間內(nèi),該車每100千米平均耗油量為( )
A.6升 B.8升 C.10升 D.12升
【答案】B
3.宜黃高速公路連接宜昌、武漢、黃石三市,全長約350公里,是湖北省大三角經(jīng)濟(jì)主骨架的干線公路之一.若某汽車從進(jìn)入該高速公路后以不低于60千米/時且不高于120千米/時的速度勻速行駛,已知該汽車每小時的運(yùn)輸成本由固定部分和可變部分組成,固定部分為200元,可變部分與速度v(千米/時)的平方成正比(比例系數(shù)記為k).當(dāng)汽車以最快速度行駛時,每小時的運(yùn)輸成本為488元.
5、若使汽車的全程運(yùn)輸成本最低,其速度為 .
【答案】100千米每小時
【解析】設(shè)運(yùn)輸費(fèi)用為,當(dāng)時
,當(dāng)且僅當(dāng),即時等號成立,取得最小值.
4.【20xx湖北八校聯(lián)考】某人根據(jù)經(jīng)驗(yàn)繪制了春節(jié)前后,從12月21日至1月8日自己種植的西紅柿的銷售量y(千克)隨時間x(天)變化的函數(shù)圖象,如圖所示,則此人在12月26日大約賣出了西紅柿________千克.
【答案】
【解析】前10天滿足一次函數(shù)關(guān)系,設(shè)為y=kx+b,將點(diǎn)(1,10)和點(diǎn)(10,30)代入函數(shù)解析式得解得k=,b=,所以y=x+,則當(dāng)x=6時,y=.
5.某類產(chǎn)品按工藝共分10個檔次,最低檔次產(chǎn)品每
6、件利潤為8元.每提高一個檔次,每件利潤增加2元.用同樣工時,可以生產(chǎn)最低檔次產(chǎn)品60件,每提高一個檔次將少生產(chǎn)3件產(chǎn)品,則每天獲得利潤最大時生產(chǎn)產(chǎn)品的檔次是( )
A.7 B.8 C.9 D.10
【答案】C
C 思維拓展訓(xùn)練
1. 【20xx北京】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點(diǎn)Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時間和加工的零件數(shù),點(diǎn)Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Q1為第i名工人在這一天中加工的零件總數(shù),則Q1
7、,Q2, Q3中最大的是_________.
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是_________.
【答案】;
【解析】作圖可得中點(diǎn)縱坐標(biāo)比中點(diǎn)縱坐標(biāo)大,所以第一位選
分別作關(guān)于原點(diǎn)的對稱點(diǎn),比較直線 斜率,可得最大,所以選
2.有三個房間需要粉刷,粉刷方案要求:每個房間只用一種顏色,且三個房間顏色各不相同.已知三個房間的粉刷面積(單位:)分別為,,,且,三種顏色涂料的粉刷費(fèi)用(單位:元/)分別為,,,且.在不同的方案中,最低的總費(fèi)用(單位:元)是( )
A. B. C. D.
8、
【答案】B
【解析】
3.【20xx安徽合肥二模】對函數(shù),如果存在使得,則稱與為函數(shù)圖像的一組奇對稱點(diǎn).若(為自然數(shù)的底數(shù))存在奇對稱點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】由題意,函數(shù)存在奇對稱點(diǎn),即函數(shù)圖像上存在兩點(diǎn)關(guān)于原點(diǎn)對稱,可設(shè)兩點(diǎn)為, ,即, ,因?yàn)殛P(guān)于原點(diǎn)對稱,所以,即,因?yàn)椋?,故選B.
4.某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(Ⅰ)寫出第一次服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t
9、);
(Ⅱ)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?
【答案】(Ⅰ);(Ⅱ)小時.
【解析】(Ⅰ)設(shè),
5.某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
【答案】(Ⅰ);(Ⅱ)(千件).
【解析】(Ⅰ)因?yàn)槊考唐肥蹆r為0.05萬元,則千件商品銷售額為0.051000萬元,依題意得:
當(dāng)時,.
當(dāng)時,=.
所以