《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測): 專題9.2 兩條直線的位置關(guān)系練》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測): 專題9.2 兩條直線的位置關(guān)系練(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
專題9.2 兩條直線的位置關(guān)系
A 基礎(chǔ)鞏固訓(xùn)練
1. 【重慶市第一中學(xué)高三上學(xué)期期中】過點(diǎn),且在軸上的截距為3的直線方程是( )
A. B. C. D.
【答案】D
2. “”是 “直線與直線互相平行”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
【答案】C
【解析】由已知得,兩條直線平行的充要條件是,解得,故“”是 “直線與直線互相平行”的充要條件,選C.
3.【湖北省浠水縣實(shí)驗(yàn)高級中學(xué)高三12月測試】若三條直線相交于同一點(diǎn),則點(diǎn)
2、到原點(diǎn)的距離的最小值為()
A. B. C. D.
【答案】A
【解析】聯(lián)立,解得
把(1,2)代入可得
∴.
∴點(diǎn)到原點(diǎn)的距離
當(dāng)時(shí),取等號。
∴點(diǎn)到原點(diǎn)的距離的最小值為.
故選:A.
4.【江西省贛中南五校高三下學(xué)期期中】直線與兩條直線,分別交于、兩點(diǎn),線段的中點(diǎn)坐標(biāo)為,那么直線的斜率是( )
A. B. C. D.
【答案】C
5.設(shè)分別是中所對邊的邊長,則直線與的位置關(guān)系是( )
A.平行 B.重合 C.垂直 D.相交但不垂直
【答案】C
【解析】要尋求直線與的
3、位置關(guān)系,只要先求兩直線的斜率,然后由斜率的關(guān)系判斷直線的位置即可.由題意可得直線的斜率,的斜率的斜率, 則直線與垂直
故選C.
B能力提升訓(xùn)練
1.【陜西省咸陽市高三二?!恳阎}:“”,命題:“直線與直線互相垂直”,則命題是命題的
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要
【答案】A
2.【浙江省杭州市高三4月檢測】設(shè), 分別是兩條直線, 的斜率,則“”是“”的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充分必要條件 D. 既不
4、充分也不必要條件
【答案】C
【解析】因?yàn)?是兩條不同的直線,所以若,則 ,反之,若,則.故選擇C.
3.如圖所示,已知A(4,0),B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到P點(diǎn),則光線所經(jīng)過的路程是( )
A.2 B.6 C.3 D.2
【答案】A
【解析】由題意知點(diǎn)P關(guān)于直線AB的對稱點(diǎn)為D(4,2),關(guān)于y軸的對稱點(diǎn)為C(-2,0),則光線所經(jīng)過的路程為|CD|=2.故選A.
4.下列說法的正確的是 ( )
A.經(jīng)過定點(diǎn)的直線都可以用方程表示
B.經(jīng)過定點(diǎn)
5、的直線都可以用方程表示
C.經(jīng)過任意兩個(gè)不同的點(diǎn),的直線都可以用方程表示
D.不經(jīng)過原點(diǎn)的直線都可以用方程表示
【答案】C
5.平面直角坐標(biāo)系中,直線y=2x+1關(guān)于點(diǎn)(1,1)對稱的直線方程是( )
A.y=2x-1 B.y=-2x+1
C.y=-2x+3 D.y=2x-3
【答案】D
【解析】在直線y=2x+1上任取兩個(gè)點(diǎn)A(0,1),B(1,3),則點(diǎn)A關(guān)于點(diǎn)(1,1)對稱的點(diǎn)為M(2,1),點(diǎn)B關(guān)于點(diǎn)(1,1)對稱的點(diǎn)為N(1,-1).由兩點(diǎn)式求出對稱直線MN的方程為y=2x-3,故選D項(xiàng).
C思維擴(kuò)展訓(xùn)練
1.已知點(diǎn)P在y=x2上
6、,且點(diǎn)P到直線y=x的距離為,這樣的點(diǎn)P的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
【答案】B
【解析】∵點(diǎn)P在y=x2上,∴設(shè)P(t,t2),則=,|t2-t|=1,
解之得t1=,t2=,∴P點(diǎn)有兩個(gè),故選B.
2.已知光線通過點(diǎn),被直線:反射,反射光線通過點(diǎn), 則反射光線所在直線的方程是 .
【答案】
【解析】
試題分析:關(guān)于直線:對稱點(diǎn)為,所以反射光線所在直線的方程為
3.若直線:經(jīng)過點(diǎn),則直線在軸和軸的截距之和的最小值是 .
【答案】.
4.已知的三個(gè)頂點(diǎn)的坐標(biāo)為.
(1)求邊上的高所在
7、直線的方程;
(2)若直線與平行,且在軸上的截距比在軸上的截距大1,求直線與兩條坐標(biāo)軸圍成的三角形的周長.
【答案】(1);(2).
【解析】
(1),∴邊上的高所在直線的斜率為,
又∵直線過點(diǎn) ∴直線的方程為:,即;
(2)設(shè)直線的方程為:,即 ,
解得: ∴直線的方程為:,
∴直線過點(diǎn)三角形斜邊長為
∴直線與坐標(biāo)軸圍成的直角三角形的周長為.
注:設(shè)直線斜截式求解也可.
5.已知,直線, 相交于點(diǎn)P,交y軸于點(diǎn)A,交x軸于點(diǎn)B
(1)證明:;
(2)用m表示四邊形OAPB的面積S,并求出S的最大值;
(3)設(shè)S= f (m), 求的單調(diào)區(qū)間.
【答案】(1)見解析;(2)1;(3)在(-1,0)上為減函數(shù),在(0,1)上為增函數(shù).
又
(3), 又是單調(diào)遞減的函數(shù),
而在(-1,0)上遞增,在(0,1)上遞減,
在(-1,0)上為減函數(shù),在(0,1)上為增函數(shù)