《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測(cè)): 專題3.2 導(dǎo)數(shù)的運(yùn)算講》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測(cè)): 專題3.2 導(dǎo)數(shù)的運(yùn)算講(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題專題 3.23.2 導(dǎo)數(shù)的運(yùn)算導(dǎo)數(shù)的運(yùn)算【考綱解讀】【考綱解讀】考 點(diǎn)考綱內(nèi)容5 年統(tǒng)計(jì)分析預(yù)測(cè)導(dǎo)數(shù)的運(yùn)算會(huì)用基本初等函數(shù)的導(dǎo)數(shù)公式表和導(dǎo)數(shù)的四則運(yùn)算法則求函數(shù)的導(dǎo)數(shù), 并能求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù) (限于形如()f axb)的導(dǎo)數(shù)).20 xx 浙江理科 8,22;文科 8,21;20 xx 浙江理科 22;文科 21;20 xx 浙江卷 7,20.1.1.導(dǎo)數(shù)的運(yùn)算將依然以工具的形式考查;3.3.單獨(dú)考查導(dǎo)數(shù)的運(yùn)算題目極少.3.3.備考重點(diǎn):備考重點(diǎn):熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的四則運(yùn)算法則.【知識(shí)清單】【知識(shí)清單】基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)的導(dǎo)數(shù)公式及及導(dǎo)數(shù)的運(yùn)算法則
2、導(dǎo)數(shù)的運(yùn)算法則1. 基本初等函數(shù)的導(dǎo)數(shù)公式原函數(shù)導(dǎo)函數(shù)f(x)c(c為常數(shù))f(x)0f(x)xn(nQ*)f(x)nxn1f(x)sinxf(x)cosxf(x)cosxf(x)sinxf(x)axf(x)axlnaf(x)exf(x)exf(x)logaxf(x)1xlnaf(x)lnxf(x)1x2導(dǎo)數(shù)的運(yùn)算法則(1) f(x)g(x)f(x)g(x);(2) f(x)g(x)f(x)g(x)f(x)g(x);(3)2( )( )( )( )( )( )( )f xfxg xg xf xg xgx(g(x)0)(4) 復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)yf(g(x)的導(dǎo)數(shù)和函數(shù)yf(u),ug(x)
3、的導(dǎo)數(shù)間的關(guān)系為yxyuux,即y對(duì)x的導(dǎo)數(shù)等于y對(duì)u的導(dǎo)數(shù)與u對(duì)x的導(dǎo)數(shù)的乘積對(duì)點(diǎn)練習(xí):對(duì)點(diǎn)練習(xí):分別求下列函數(shù)的導(dǎo)數(shù):(1)yexcosx;(2)yxx21x1x3;(3)yxsinx2cosx2;(4)yln 1x2.【答案】 (1) excosxexsinx.(2) 3x22x3.(3) 112cosx.(4)x1x2.【考點(diǎn)深度剖析】【考點(diǎn)深度剖析】高考對(duì)導(dǎo)數(shù)的運(yùn)算的考查,主要通過(guò)考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的應(yīng)用來(lái)體現(xiàn),近 5年來(lái),沒(méi)有獨(dú)立考查導(dǎo)數(shù)的運(yùn)算的題目.【重點(diǎn)難點(diǎn)突破】【重點(diǎn)難點(diǎn)突破】考點(diǎn)考點(diǎn) 1 1運(yùn)用導(dǎo)數(shù)公式進(jìn)行計(jì)算運(yùn)用導(dǎo)數(shù)公式進(jìn)行計(jì)算【1-1】求下列函數(shù)的導(dǎo)數(shù). 222x
4、xx251 y2x1 (3x1)xx12 yxx13 y3 e2elnx4 yx15 y32x【答案】(1)21843xx;(2)22222(1)xxx;(3)3322xxeln eln;(4)2222ln ) 1x(11)xxx;(5)410 32.x 222221312 2 1 314313 2112463yxxxxxxxxxx =21843xx.(2)根據(jù)題意把函數(shù)的解析式整理變形可得:22222222222xx1xx12x2xy1,xx1xx1xx12 xx12x 2x12x2yxx1xx1 (3)根據(jù)求導(dǎo)法則進(jìn)行求導(dǎo)可得:)(3(2(23(22)3322)xxxxxxxxxxxxxy
5、eeeeln eeln 3322xxeln eln.(4)根據(jù)題意利用除法的求導(dǎo)法則進(jìn)行求導(dǎo)可得:2222222222(lnx) x1lnxx1yx11x1lnx 2xx12lnx1x.x1x x1 (5)設(shè)=3-2x,則 y=(3-2x)5是由 y=5與=3-2x 復(fù)合而成,所以y=fx=(5)(3-2x)=54(-2)=-104=410 32.x【領(lǐng)悟技法】1.求函數(shù)導(dǎo)數(shù)的一般原則如下:(1)遇到連乘積的形式,先展開(kāi)化為多項(xiàng)式形式,再求導(dǎo);(2)遇到根式形式,先化為分?jǐn)?shù)指數(shù)冪,再求導(dǎo);(3)遇到復(fù)雜分式,先將分式化簡(jiǎn),再求導(dǎo).2.復(fù)合函數(shù)的求導(dǎo)方法,求復(fù)合函數(shù)的導(dǎo)數(shù), 一般是運(yùn)用復(fù)合函數(shù)的
6、求導(dǎo)法則, 將問(wèn)題轉(zhuǎn)化為求基本函數(shù)的導(dǎo)數(shù)解決.分析清楚復(fù)合函數(shù)的復(fù)合關(guān)系是由哪些基本函數(shù)復(fù)合而成的,適當(dāng)選定中間變量;分步計(jì)算中的每一步都要明確是對(duì)哪個(gè)變量求導(dǎo),而其中特別要注意的是中間變量;根據(jù)基本函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則, 求出各函數(shù)的導(dǎo)數(shù), 并把中間變量轉(zhuǎn)換成自變量的函數(shù);復(fù)合函數(shù)的求導(dǎo)熟練以后,中間步驟可以省略,不必再寫(xiě)出函數(shù)的復(fù)合過(guò)程.【觸類旁通】【變式一】求下列函數(shù)的導(dǎo)數(shù):(1)y(x1)(x2)(x3);(2)y3xex2xe;【答案】(1) 3x212x11.(2) (ln31)(3e)x2xln2.【解析】3x212x11.(2)y(3xex)(2x)e(3x)ex3x
7、(ex)(2x)3xexln33xex2xln2(ln31)(3e)x2xln2.考點(diǎn)考點(diǎn) 2 2導(dǎo)數(shù)運(yùn)算的靈活應(yīng)用導(dǎo)數(shù)運(yùn)算的靈活應(yīng)用【2-1】 已知函數(shù))(xf的導(dǎo)函數(shù)為)(xf , 且滿足xf xxfln) 1 (2)(, 則 ) 1 (f()AeB1C1De【答案】B【解析】xf xxfln) 1 (2)(,xfxf112)( )( 令1x,得1121)( )( ff,解得, ) 1 (f-1故選 B【2-2】數(shù)列 nc為等比數(shù)列,其中4, 281cc,)()()(821cxcxcxxxf ,)(xf 為函數(shù))(xf的導(dǎo)函數(shù),則)0(f A、0B、62C、92D、122【答案】D【領(lǐng)悟技
8、法】(1)求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形對(duì)函數(shù)進(jìn)行化簡(jiǎn),然后求導(dǎo),這樣可以減少運(yùn)算量,提高運(yùn)算速度,減少差錯(cuò);遇到函數(shù)的商的形式時(shí),如能化簡(jiǎn)則化簡(jiǎn),這樣可避免使用商的求導(dǎo)法則,減少運(yùn)算量(2)復(fù)合函數(shù)求導(dǎo)時(shí),先確定復(fù)合關(guān)系,由外向內(nèi)逐層求導(dǎo),必要時(shí)可換元.【觸類旁通】【變式一】已知f1(x)sinxcosx,fn1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)f1(x),f3(x)f2(x),fn1(x)fn(x),nN N* *,則f2 017(x)等于()A.sinxcosxB.sinxcosxC.sinxcosxD.sinxcosx【答案】D【解析】f1(x)sinxcosx,f2(x
9、)f1(x)cosxsinx,f3(x)f2(x)sinxcosx,f4(x)f3(x)cosxsinx,f5(x)f4(x)sinxcosx,fn(x)是以 4 為周期的函數(shù),f2 017(x)f1(x)sinxcosx,故選 D.【變式二】已知函數(shù)3( )sin4( ,),( )f xaxbxa bRfx為( )f x的導(dǎo)函數(shù),則(2014)( 2014)(2015)( 2015)ffff()A0B20 xxC20 xxD8【答案】D【解析】【易錯(cuò)試題常警惕】【易錯(cuò)試題常警惕】易錯(cuò)典例易錯(cuò)典例 1 1:(1)若函數(shù)f(x)2x3a2,則f(x)_(2)函數(shù)ylnxex的導(dǎo)函數(shù)為_(kāi)易錯(cuò)分析易
10、錯(cuò)分析:f(x)6x22a.沒(méi)弄清函數(shù)中的變量是x,而a只是一個(gè)字母常量,其導(dǎo)數(shù)為0.正確解析正確解析: (1)6x2; (2)y1xexexlnx(ex)21xlnxxex.溫馨提醒溫馨提醒:對(duì)函數(shù)求導(dǎo),一般要遵循先化簡(jiǎn)再求導(dǎo)的基本原則求導(dǎo)時(shí),不但要重視求導(dǎo)法則的應(yīng)用,而且要特別注意求導(dǎo)法則對(duì)求導(dǎo)的制約作用,在實(shí)施化簡(jiǎn)時(shí),首先必須注意變換的等價(jià)性,避免不必要的運(yùn)算失誤.【學(xué)科素養(yǎng)提升之思想方法篇】【學(xué)科素養(yǎng)提升之思想方法篇】近似與精確、有限與無(wú)限無(wú)限逼近的極限思想1.由0()( )( )limxf xxf xfxx 可以知道,函數(shù)的導(dǎo)數(shù)是函數(shù)的瞬時(shí)變化率,函數(shù)的瞬時(shí)變化率是平均變化率的極限,
11、充分說(shuō)明極限是人們從近似中認(rèn)識(shí)精確的數(shù)學(xué)方法.極限的實(shí)質(zhì)就是無(wú)限近似的量, 向著有限的目標(biāo)無(wú)限逼近而產(chǎn)生量變導(dǎo)致質(zhì)變的結(jié)果, 這是極限的實(shí)質(zhì)與精髓,也是導(dǎo)數(shù)的思想及其內(nèi)涵.2.曲線的切線定義,充分體現(xiàn)了運(yùn)動(dòng)變化及無(wú)限逼近的思想: “兩個(gè)不同的公共點(diǎn)兩公共點(diǎn)無(wú)限接近兩公共點(diǎn)重合(切點(diǎn))”“割線切線”.(1)在求曲線的切線方程時(shí),注意兩個(gè)“說(shuō)法” :求曲線在點(diǎn) P 處的切線方程和求曲線過(guò)點(diǎn) P的切線方程,在點(diǎn) P 處的切線,一定是以點(diǎn) P 為切點(diǎn),過(guò)點(diǎn) P 的切線,不論點(diǎn) P 在不在曲線上,點(diǎn) P 不一定是切點(diǎn)【典例】設(shè)函數(shù)f(x)axbx,曲線yf(x)在點(diǎn)(2,f(2)處的切線方程為 7x4y120.(1)求f(x)的解析式;(2)曲線f(x)上任一點(diǎn)處的切線與直線x0 和直線yx所圍成的三角形面積為定值,并求此定值.【答案】(1)f(x)x3x.(2)6.【解析】(1)方程 7x4y120 可化為y74x3,當(dāng)x2 時(shí),y12.又f(x)abx2,于是2ab212,ab474,解得a1,b3.故f(x)x3x.所以點(diǎn)P(x0,y0)處的切線與直線x0,yx所圍成的三角形的面積為S12|6x0|2x0|6.故曲線yf(x)上任一點(diǎn)處的切線與直線x0,yx所圍成的三角形面積為定值,且此定值為 6.