《與名師對話高三數(shù)學文一輪復習課時跟蹤訓練:第二章 函數(shù)的概念與基本初等函數(shù) 課時跟蹤訓練8 Word版含解析》由會員分享,可在線閱讀,更多相關《與名師對話高三數(shù)學文一輪復習課時跟蹤訓練:第二章 函數(shù)的概念與基本初等函數(shù) 課時跟蹤訓練8 Word版含解析(10頁珍藏版)》請在裝配圖網上搜索。
1、
高考數(shù)學精品復習資料
2019.5
課時跟蹤訓練(八)
[基礎鞏固]
一、選擇題
1.函數(shù)y=x的圖象是( )
[解析] 函數(shù)圖象過(1,1)點,排除A、D;又當x∈(0,1)時,y>x,故選B.
[答案] B
2.函數(shù)y=x2+ax+6在上是增函數(shù),則a的取值范圍為( )
A.(-∞,-5] B.(-∞,5]
C.[-5,+∞) D.[5,+∞)
[解析] 對稱軸x=-≤,解得a≥-5.
[答案] C
3.(20xx·鄭州外國語學校期中)已知α∈{-1,1,2,3},則
2、使函數(shù)y=xα的值域為R,且為奇函數(shù)的所有α的值為( )
A.1,3 B.-1,1
C.-1,3 D.-1,1,3
[解析] 因為函數(shù)y=xα為奇函數(shù),故α的可能值為-1,1,3.又y=x-1的值域為{y|y≠0},函數(shù)y=x,y=x3的值域都為R.所以符合要求的α的值為1,3.
[答案] A
4.(20xx·山東菏澤模擬)已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則( )
A.a>0,4a+b=0 B.a<0,4a+b=0
C.a>0,2a+b=0 D.a<0,2a+b=0
[解析]
3、 由f(0)=f(4)得f(x)=ax2+bx+c圖象的對稱軸為x=-=2,∴4a+b=0,又f(0)>f(1),∴f(x)先減后增,于是a>0.故選A.
[答案] A
5.若函數(shù)f(x)=x2-ax-a在區(qū)間[0,2]上的最大值為1,則實數(shù)a等于( )
A.-1 B.1
C.2 D.-2
[解析] ∵函數(shù)f(x)=x2-ax-a的圖象為開口向上的拋物線,
∴函數(shù)的最大值在區(qū)間的端點取得,
∵f(0)=-a,f(2)=4-3a,
∴或解得a=1.
[答案] B
6.(20xx·湖南長沙一模)已知函數(shù)f(x)=x,則( )
A.?x0∈R,使得f(
4、x0)<0
B.?x∈(0,+∞),f(x)≥0
C.?x1,x2∈[0,+∞)(x1≠x2),使得<0
D.?x1∈[0,+∞),?x2∈[0,+∞),使得f(x1)>f(x2)
[解析] 由f(x)=x的定義域為[0,+∞),且在[0,+∞)上,f(x)≥0恒成立,故A錯誤,B正確;易知f(x)是[0,+∞)上的增函數(shù),∴?x1,x2∈[0,+∞)(x1≠x2),>0,故C錯誤;在D中,當x1=0時,不存在x2∈[0,+∞)使得f(x1)>f(x2),故D錯誤.故選B.
[答案] B
二、填空題
7.二次函數(shù)的圖象過點(0,1),對稱軸為x=2,
5、最小值為-1,則它的解析式為________.
[解析] 依題意可設f(x)=a(x-2)2-1,
又其圖象過點(0,1),
∴4a-1=1,∴a=.∴f(x)=(x-2)2-1.
[答案] f(x)=(x-2)2-1
8.(20xx·安徽安慶模擬)已知P=2,Q=3,R=3,則P,Q,R的大小關系是________.
[解析] P=2-=3,根據(jù)函數(shù)y=x3是R上的增函數(shù),且>>,得3>3>3,即P>R>Q.
[答案] P>R>Q
9.若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍是
6、________.
[解析] 由f(x)=-x2+2ax在[1,2]上是減函數(shù)可得[1,2]?[a,+∞),∴a≤1.
∵y=在(-1,+∞)上為減函數(shù),
∴由g(x)=在[1,2]上是減函數(shù)可得a>0,故0<a≤1.
[答案] (0,1]
三、解答題
10.已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*)的圖象經過點(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.
[解] 冪函數(shù)f(x)的圖象經過點(2,),
∴=2(m2+m)-1,即2=2(m2+m)-1.
∴m2+m=2.解得m=1或m=-2.
又∵m∈N*,∴m
7、=1.∴f(x)=x,
則函數(shù)的定義域為[0,+∞),并且在定義域上為增函數(shù).
由f(2-a)>f(a-1)得解得1≤a<.∴a的取值范圍為.
[能力提升]
11.若冪函數(shù)y=(m2-3m+3)·xm2-m-2的圖象不過原點,則m的取值是( )
A.-1≤m≤2 B.m=1或m=2
C.m=2 D.m=1
[解析] 由冪函數(shù)性質可知m2-3m+3=1,∴m=2或m=1.又冪函數(shù)圖象不過原點,∴m2-m-2≤0,即-1≤m≤2.∴m=2或m=1.
[答案] B
12.(20xx·全國卷Ⅱ)已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-
8、x),若函數(shù)y=|x2-2x-3|與y=f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則xi=( )
A.0 B.m
C.2m D.4m
[解析] 由f(x)=f(2-x)知f(x)的圖象關于直線x=1對稱,又函數(shù)y=|x2-2x-3|=|(x-1)2-4|的圖象也關于直線x=1對稱,所以這兩個函數(shù)的圖象的交點也關于直線x=1對稱.不妨設x1<x2<…<xm,則=1,即x1+xm=2,同理有x2+xm-1=2,x3+xm-2=2,…,又xi=xm+xm-1+…+x1,所以2xi=(x1+xm)+(x2+xm-1)+…+(xm+x1)=2m,所
9、以xi=m.
取特殊函數(shù)f(x)=0(x∈R),它與y=|x2-2x-3|的圖象有兩個交點(-1,0),(3,0),此時m=2,x1=-1,x2=3,故xi=2=m,只有B選項符合.
[答案] B
13.當x∈(1,2)時,不等式x2+mx+4<0恒成立,則m的取值范圍是________.
[解析] 解法一:設f(x)=x2+mx+4,當x∈(1,2)時,f(x)<0恒成立???m≤-5.
解法二:∵不等式x2+mx+4<0對x∈(1,2)恒成立,
∴mx<-x2-4對x∈(1,2)恒成立,即m<-對x∈(1,2)恒成立,令y=x+,則函數(shù)y=x+在(
10、1,2)上是減函數(shù),∴4<y<5,∴-5<-<-4,
∴m≤-5.
[答案] (-∞,-5]
14.(20xx·河北“五個一名校聯(lián)盟”質量監(jiān)測)設f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關聯(lián)函數(shù)”,則m的取值范圍為________.
[解析] 由題意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有兩個不同的零點.
11、在同一直角坐標系下作出函數(shù)y=m與y=x2-5x+4(x∈[0,3])的圖象如圖所示,結合圖象可知,當x∈[2,3]時,y=x2-5x+4∈,故當m∈時,函數(shù)y=m與y=x2-5x+4(x∈[0,3])的圖象有兩個交點.
[答案]
15.(20xx·蘭州調研)已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當a=-2時,求f(x)的最值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調函數(shù);
(3)當a=-1時,求f(|x|)的單調區(qū)間.
[解] (1)當a=-2時,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],
12、
∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,
故f(x)的最大值是35.
(2)由于函數(shù)f(x)的圖象開口向上,對稱軸是x=-a,所以要使f(x)在[-4,6]上是單調函數(shù),應有-a≤-4或-a≥6,即a≤-6或a≥4.
故a的取值范圍是(-∞,-6]∪[4,+∞).
(3)當a=-1時,f(|x|)=x2-2|x|+3=
其圖象如圖所示,
又∵x∈[-4,6],∴f(|x|)在區(qū)間[-4,-1)和[0,1)上為減函數(shù),在區(qū)間[-1,0)和[1,6]上為增函數(shù).
16.已知函數(shù)f(x)=x2-4x+a+3,a∈R.
(1)若函數(shù)f(x)在(-
13、∞,+∞)上至少有一個零點,求a的取值范圍;
(2)若函數(shù)f(x)在[a,a+1]上的最大值為3,求a的值.
[解] (1)依題意,函數(shù)y=f(x)在R上至少有一個零點,即方程f(x)=x2-4x+a+3=0至少有一個實數(shù)根,所以Δ=16-4(a+3)≥0,解得a≤1.
(2)函數(shù)y=f(x)=x2-4x+a+3的圖象的對稱軸方程是x=2.
①當a+≤2,即a≤時,ymax=f(a)=a2-3a+3=3.解得a=0或a=3.
又因為a≤,所以a=0.
②當a+>2,即a>時,ymax=f(a+1)=a2-a=3,解得a=.
又因為a>,所以a=.
綜上,a=0
14、或a=.
[延伸拓展]
(20xx·西安模擬)對二次函數(shù)f(x)=ax2+bx+c(a為非零整數(shù)),四位同學分別給出下列結論,其中有且僅有一個結論是錯誤的,則錯誤的結論是( )
A.-1是f(x)的零點
B.1是f(x)的極值點
C.3是f(x)的極值
D.點(2,8)在曲線y=f(x)上
[解析] A項中,-1是f(x)的零點,
則有a-b+c=0;①
B項中,1是f(x)的極值點,
則有b=-2a;②
C項中,3是f(x)的極值;
則有=3;③
D項中,點(2,8)在曲線y=f(x)上,
則有4a+2b+c=8.④
聯(lián)立①②③解得a=-,b=,c=;
聯(lián)立②③④解得a=5,b=-10,c=8,由a為非零整數(shù)可判斷A項錯誤,故選A.
[答案] A