氣動翻轉(zhuǎn)機(jī)械手部件設(shè)計(jì)[動畫仿真][PPT]
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),圖紙為CAD格式可編輯,有疑問咨詢QQ:414951605 或 1304139763p
浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)任務(wù)書
楊永賀 同學(xué)(專業(yè) / 班級:機(jī)械設(shè)計(jì)制造及其自動化09(4))
現(xiàn)下達(dá)畢業(yè)設(shè)計(jì)(論文)課題任務(wù)書,望能保質(zhì)保量地認(rèn)真按時(shí)完成。
課題名稱
氣動翻轉(zhuǎn)機(jī)械手部件設(shè)計(jì)
主要任務(wù)與
目標(biāo)
工業(yè)機(jī)械手是現(xiàn)代生產(chǎn)線設(shè)備,機(jī)械手可快速準(zhǔn)確地完成規(guī)定動作,縮短輔助時(shí)間,提高生產(chǎn)效率。由于機(jī)械手的重要作用,國內(nèi)外已研制有大量機(jī)械手,多數(shù)屬專用設(shè)備,單種機(jī)械手只能應(yīng)用固定場合,對新的應(yīng)用,須研制新機(jī)械手。在借鑒已有機(jī)械手的基礎(chǔ)上,可對機(jī)械手結(jié)構(gòu)和功能加以改進(jìn),以適應(yīng)多種需要。
課題主要設(shè)計(jì)一套氣動翻轉(zhuǎn)機(jī)械手部件,功能為將工件移位并實(shí)現(xiàn)翻轉(zhuǎn)動作。設(shè)計(jì)內(nèi)容包括傳動部件的結(jié)構(gòu)設(shè)計(jì)、傳動方式的選擇、傳動件的結(jié)構(gòu)設(shè)計(jì)、支撐方式的選擇、夾持部件的設(shè)計(jì)、以及其他結(jié)構(gòu)件的設(shè)計(jì)。重點(diǎn)解決氣動翻轉(zhuǎn)部件的結(jié)構(gòu)設(shè)計(jì)、傳動結(jié)構(gòu)設(shè)計(jì)和夾持部件的結(jié)構(gòu)設(shè)計(jì)。
主要任務(wù)是:
1)氣動翻轉(zhuǎn)機(jī)械手部件方案設(shè)計(jì);
2)重要零部件分析計(jì)算;
3)氣動翻轉(zhuǎn)機(jī)械手部件結(jié)構(gòu)設(shè)計(jì);
目標(biāo):
設(shè)計(jì)一套氣動翻轉(zhuǎn)機(jī)械手部件,功能為將工件移位并實(shí)現(xiàn)翻轉(zhuǎn)動作。方案及結(jié)構(gòu)設(shè)計(jì)合理,圖紙滿足生產(chǎn)要求。
主要內(nèi)容與基本要求
主要設(shè)計(jì)內(nèi)容:
1)氣動翻轉(zhuǎn)機(jī)械手部件方案的確定;
2)工況及受力分析;
3)傳動方式選擇;
4)重要尺寸計(jì)算;
5)部件結(jié)構(gòu)設(shè)計(jì);
6)零件結(jié)構(gòu)設(shè)計(jì);
7)技術(shù)要求的制定。
基本要求:
按照題目內(nèi)容,完成方案設(shè)計(jì),結(jié)構(gòu)設(shè)計(jì),裝配圖和零件圖繪制,總計(jì)不少于2張零號圖紙,方案結(jié)構(gòu)合理。
完成畢業(yè)設(shè)計(jì)要求的各種文檔,包括文獻(xiàn)綜述、開題報(bào)告、外文翻譯及畢業(yè)設(shè)計(jì)論文等。
按照進(jìn)度安排,認(rèn)真按時(shí)完成設(shè)計(jì)任務(wù)。
主要參
考資料
及文獻(xiàn)
閱讀任務(wù)
查閱與課題有關(guān)的文獻(xiàn)(論文、書籍或手冊等)不少于10篇(部),寫出符合要求的文獻(xiàn)綜述報(bào)告。主要參考文獻(xiàn)如下:
[1] 郭瑞潔, 鐘康民. 基于鉸桿-杠桿串聯(lián)增力機(jī)構(gòu)的內(nèi)夾持氣動機(jī)械手[J]. 液壓與氣動, 2009, 1:55-56.
[2] 于傳浩, 章滌峰. 一種氣動機(jī)械手夾持機(jī)構(gòu)的設(shè)計(jì)[J]. 液壓氣動與密封, 2003, 101(5):22-28.
[3] 吳淑英. 機(jī)械手氣動手爪的結(jié)構(gòu)分析與選擇[J]. 制造技術(shù)與機(jī)床, 1998, 9:9-11.
[4] 姚二民, 王新杰, 馬韜. 一種氣動式機(jī)械手的設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造, 1996, 2:19-20.
[5] 陶湘廳, 袁銳波, 羅璟. 氣動機(jī)械手的應(yīng)用現(xiàn)狀及發(fā)展前景[J]. 機(jī)床與液壓, 2007, 35(8):226-228.
[6] A. J. G. Nuttall, A. J. Klein Breteler. Compliance effects in a parallel jaw gripper [J]. Mechanism and Machine Theory, 2003, 38(12): 1509-1522.
[7] Ho Choi, Muammer Koc. Design and feasibility tests of a flexible gripper based on inflatable rubber pockets [J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1350-1361.
外文
翻譯任務(wù)
閱讀2篇以上(10000字符左右)的外文材料,完成2000漢字以上的英譯漢翻譯。英文參考文獻(xiàn)如下:
[1] A. J. G. Nuttall, A. J. Klein Breteler. Compliance effects in a parallel jaw gripper [J]. Mechanism and Machine Theory, 2003, 38(12): 1509-1522.
[2] Ho Choi, Muammer Koc. Design and feasibility tests of a flexible gripper based on inflatable rubber pockets [J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1350-1361.
計(jì)劃進(jìn)度:
起止時(shí)間
內(nèi)容
12月初~12月上旬
前期資料準(zhǔn)備、畢業(yè)設(shè)計(jì)任務(wù)書、文獻(xiàn)綜述、外文翻譯布置。
12月上旬~01月上旬
查閱資料(包括外文資料),撰寫文獻(xiàn)綜述、開題報(bào)告及外文資料翻譯。
01月上旬~01月中旬
完成開題報(bào)告。開題報(bào)告答辯。
01月下旬~02月中旬
(寒假)
總體方案設(shè)計(jì),分析計(jì)算,結(jié)構(gòu)設(shè)計(jì)。
02月下旬~04月上旬
方案設(shè)計(jì),分析計(jì)算,結(jié)構(gòu)設(shè)計(jì),圖紙繪制,撰寫說明書。
04月上旬~04月中旬
畢業(yè)設(shè)計(jì)中期檢查完成情況及表格與記錄的填寫。
04月中旬~05月上旬
完成圖紙繪制,說明書撰寫。提交畢業(yè)設(shè)計(jì)(論文)。
05月上旬~05月中旬
畢業(yè)設(shè)計(jì)(論文)的審閱;評議小組分組審閱。
05月中旬~05月下旬
畢業(yè)設(shè)計(jì)答辯。
實(shí)習(xí)地點(diǎn)
指導(dǎo)教師
簽 名
年 月 日
系 意 見
系主任簽名:
年 月 日
學(xué)院
蓋章
主管院長簽名:
年 月 日
浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
班 級
09機(jī)械設(shè)計(jì)制造及其自動化(4)班
姓 名
楊永賀
課題名稱
氣動翻轉(zhuǎn)機(jī)械手部件設(shè)計(jì)
目 錄
1 選題的背景與意義
1.1背景與意義
1.2國內(nèi)外研究現(xiàn)狀和發(fā)展趨勢
2 發(fā)展趨勢
2.1重復(fù)高精度
2.2模塊化
2.3無給油化
3 研究的基本內(nèi)容
3.1氣動翻轉(zhuǎn)機(jī)械手的結(jié)構(gòu)設(shè)計(jì)
3.2氣動翻轉(zhuǎn)機(jī)械手的三維建模、裝配
4 研究方案、可行性分析及預(yù)期研究成果
4.1研究思路方案
4.2可行性分析
5 研究工作計(jì)劃
參考文獻(xiàn)
成績:
答 辯
意 見
答辯組長簽名:
年 月 日
系
主
任
審
核
意
見
簽名:
年 月 日
氣動翻轉(zhuǎn)機(jī)械手設(shè)計(jì)的設(shè)計(jì)與分析
楊永賀
(機(jī)械設(shè)計(jì)制造及其自動化09(4)班 B09370126)
1 選題的背景與意義
1.1 背景與意義
氣動機(jī)械手的驅(qū)動力為氣壓,機(jī)械手并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機(jī)器特長的一種擬人的電子機(jī)械裝置,既有人對環(huán)境狀態(tài)的快速反應(yīng)和分析判斷能力,又有機(jī)器可長時(shí)間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,它主要是用以按固定程序抓取、搬運(yùn)物件或操作工具的自動操作裝置。所以氣動機(jī)械手能夠降低勞動強(qiáng)度,提高生產(chǎn)效率。但它的缺點(diǎn)也很明顯,因?yàn)闅怏w具有很大的可壓縮性, 要做到氣動機(jī)械手精確定位難度很大, 尤其是難以實(shí)現(xiàn)任意位置的多點(diǎn)定位;而且可壓縮性也帶來不能承受過重的負(fù)載的限制。傳統(tǒng)氣動系統(tǒng)只能靠機(jī)械定位置的調(diào)定位置而實(shí)現(xiàn)可靠定位, 并且其運(yùn)動速度只能靠單向節(jié)流閥單一調(diào)定, 經(jīng)常無法滿足許多設(shè)備的自動控制要求[1-2]。
近20年來,氣動技術(shù)的應(yīng)用領(lǐng)域迅速拓寬, 尤其是在各種自動化生產(chǎn)線上得到廣泛應(yīng)用。電氣可編程控制技術(shù)與氣動技術(shù)相結(jié)合, 使整個(gè)系統(tǒng)自動化程度更高, 控制方式更靈活, 性能更加可靠; 氣動機(jī)械手、柔性自動生產(chǎn)線的迅速發(fā)展, 對氣動技術(shù)提出了更多更高的要求;由于氣動脈寬調(diào)制技術(shù)具有結(jié)構(gòu)簡單、抗污染能力強(qiáng)和成本低廉等特點(diǎn), 國內(nèi)外都在大力研發(fā)氣動機(jī)械手[1]。
目前生產(chǎn)線上的氣動翻轉(zhuǎn)機(jī)械手一個(gè)運(yùn)動進(jìn)程只能實(shí)現(xiàn)一次抓取和翻轉(zhuǎn)的功能,效率太低。本次設(shè)計(jì)針對這個(gè)缺點(diǎn),設(shè)計(jì)出了一個(gè)運(yùn)動進(jìn)程能實(shí)現(xiàn)兩次抓取和翻轉(zhuǎn),提高了工作效率,加快生產(chǎn)效率。
1.2 國內(nèi)外研究現(xiàn)狀和發(fā)展趨勢
1.2.1 國外氣動機(jī)械手狀況
從各國的行業(yè)統(tǒng)計(jì)資料來看, 近30多年來, 氣動行業(yè)發(fā)展很快。20世紀(jì)70年代, 液壓與氣動元件的產(chǎn)值比約為9:1, 而30多年后的今天, 在工業(yè)技術(shù)發(fā)達(dá)的歐美、日本等國家, 該比例已達(dá)到6:4, 甚至接近5:5。
90年代初,有布魯塞爾皇家軍事學(xué)院Y.Bando教授領(lǐng)導(dǎo)的綜合技術(shù)部開發(fā)研制的電子氣動機(jī)器人--"阿基里斯"六腳勘測員,也被稱為FESTO的"六足動物"[12]。Y.Bando教授采用了世界上著名的德國FESTO生產(chǎn)的氣動元件、可編程控制器和傳感器等,創(chuàng)造了一個(gè)在荷馬史詩中最健壯最勇敢的希臘英雄--阿基里斯。它能在人不易進(jìn)入的危險(xiǎn)區(qū)域、污染或放射性的環(huán)境中進(jìn)行地形偵察。六腳電子氣動機(jī)器人的上方安裝了一個(gè)照相機(jī)來探視障礙物,能安全的繞過它,并在行走過程中記錄和收集數(shù)據(jù)。六腳電子氣動機(jī)器人行走的所有程序由FPC101-B可編程控制器控制,F(xiàn)PC101-B能在六個(gè)不同方向控制機(jī)器人的運(yùn)動,最大行走速度0.1m/s。通常如果有三個(gè)腳與地面接觸,機(jī)器人便能以一種平穩(wěn)的姿態(tài)行走,六腳中的每一個(gè)腳都有三個(gè)自由度,一個(gè)直線氣缸把腳提起、放下,一個(gè)擺動馬達(dá)控制腳伸展、退回,另一個(gè)擺動馬達(dá)則負(fù)責(zé)圍繞腳的軸心作旋轉(zhuǎn)運(yùn)動。每個(gè)氣缸都裝備了調(diào)節(jié)速度用的單向節(jié)流閥,使機(jī)械驅(qū)動部件在運(yùn)動時(shí)保持平穩(wěn),即在無級調(diào)速狀態(tài)下工作??刂茪飧椎拈y內(nèi)置在機(jī)器人體內(nèi),由FPC101-B可編程控制器控制。當(dāng)接通電源時(shí),氣動閥被切換到工作狀態(tài)位置,當(dāng)關(guān)閉電源時(shí),他們便回到初始位置。此外,操作者能在任何一點(diǎn)上停止機(jī)器人的運(yùn)動,如果機(jī)器人的傳感器在它的有效范圍內(nèi)檢測到障礙物,機(jī)器人也會自動停止[13]。
由漢諾威大學(xué)材料科學(xué)研究院設(shè)計(jì)的氣動攀墻機(jī)器人,它能在兩個(gè)相互垂直的表面上行走(包括從地面到墻面或者從墻面到天花板上)。該機(jī)器人軸心的圓周邊上裝備著等距離(根據(jù)步距設(shè)置)的吸盤和氣缸,一組吸盤吸力與另一組吸盤吸力的交替交換,類似腳踏似的運(yùn)動方式,使機(jī)器人產(chǎn)生旋轉(zhuǎn)步進(jìn)運(yùn)動。這種攀墻式機(jī)器人可被用于工具搬運(yùn)或執(zhí)行多種操作,如在核能發(fā)電站、高層建筑物氣動機(jī)械手位置伺服控制系統(tǒng)的研究或船舶上進(jìn)行清掃、檢驗(yàn)和安裝工作。機(jī)器人用遙控方式進(jìn)行半自動操作,操作者只需輸入運(yùn)行的目標(biāo)距離,然后計(jì)算機(jī)便能自動計(jì)算出必要的單步運(yùn)行。操作者可對機(jī)器人進(jìn)行監(jiān)控[7]。
國外的設(shè)計(jì)人員對于機(jī)械手的設(shè)計(jì)理念已經(jīng)非常成熟。Wright等人分析比較了機(jī)械手與人手抓取系統(tǒng),并把機(jī)械手分成與機(jī)器人手臂和控制系統(tǒng)相兼容、安全抓取和握持對象、準(zhǔn)確的完成復(fù)雜性任務(wù)三種類別。許多工廠的機(jī)械手的例子和機(jī)械手設(shè)計(jì)指導(dǎo)方針也被描述進(jìn)去了。Pham等人總結(jié)了機(jī)械手在不同應(yīng)用環(huán)境下設(shè)計(jì)方案應(yīng)該如何選擇。在他們的研究中,影響機(jī)械手如何選擇的變量如下:(a)成分,(b)任務(wù),(c)環(huán)境,(d)機(jī)械臂和控制條件?!俺煞帧边@個(gè)變量包括幾何、形狀、重量、表面質(zhì)量和溫度[5],這些因素都需要考慮好。對于可重構(gòu)系統(tǒng),他們以形狀和大小為標(biāo)準(zhǔn)又把這個(gè)變量分成了其他家族。對于“任務(wù)”這個(gè)變量,除了機(jī)械手的類型、不同組成部分的數(shù)量、準(zhǔn)確性及周期需要考慮外,還有主要的操作處理如抓取、握持、移動和放置都要考慮。在合適的地方設(shè)計(jì)核實(shí)的機(jī)械手,必須考慮所有的因素,而且驗(yàn)證性的測試必須要多做。為了減少疲勞效應(yīng),pham等人開發(fā)了一個(gè)用于選擇機(jī)械手的專家系統(tǒng)。
1.2.2 國內(nèi)氣動機(jī)械手情況
我國改革開放以來,氣動行業(yè)發(fā)展很快。1986年至2003年間,氣動元件產(chǎn)值的年第增率達(dá)24.2,高于中國機(jī)械工業(yè)產(chǎn)值平均年遞增率10的水平。雖然市場和應(yīng)用發(fā)展迅速,但是我國的氣動技術(shù)與歐美、日本等國相比,還存在著相當(dāng)大的差距。我國在氣動技術(shù)的研究與開發(fā)的方面,缺乏先進(jìn)的儀器與設(shè)備,研究開發(fā)手段落后,技術(shù)力量差,每年問世的新產(chǎn)品數(shù)量極其有限。在許多開發(fā)與研究領(lǐng)域還是空白,因此必須跟蹤國外氣動技術(shù)的最新發(fā)展動向,以減小差距,提高我國氣動技術(shù)的水平[8]。
2 發(fā)展趨勢
2.1 重復(fù)高精度
精度是指機(jī)器人、機(jī)械手到達(dá)指定點(diǎn)的精確程度, 它與驅(qū)動器的分辨率以及反饋裝置有關(guān)。重復(fù)精度是指如果動作重復(fù)多次, 機(jī)械手到達(dá)同樣位置的精確程度重復(fù)精度比精度更重要, 如果一個(gè)機(jī)器人定位不夠精確, 通常會顯示一個(gè)固定的誤差, 這個(gè)誤差是可以預(yù)測的, 因此可以通過編程予以校正。重復(fù)精度限定的是一個(gè)隨機(jī)誤差的范圍, 它通過一定次數(shù)地重復(fù)運(yùn)行機(jī)器人來測定[15] 。隨著微電子技術(shù)和現(xiàn)代控制技術(shù)的發(fā)展, 以及氣動伺服技術(shù)走出實(shí)驗(yàn)室和氣動伺服定位系統(tǒng)的成套化。氣動機(jī)械手的重復(fù)精度將越來越高, 它的應(yīng)用領(lǐng)域也將更廣闊, 如核工業(yè)和軍事工業(yè)等。
2.2 模塊化
有的公司把帶有系列導(dǎo)向驅(qū)動裝置的氣動機(jī)械手稱為簡單的傳輸技術(shù), 而把模塊化拼裝的氣動機(jī)械手稱為現(xiàn)代傳輸技術(shù)。模塊化拼裝的氣動機(jī)械手比組合
導(dǎo)向驅(qū)動裝置更具靈活的安裝體系。它集成電接口和帶電纜及氣管的導(dǎo)向系統(tǒng)裝置, 使機(jī)械手運(yùn)動自如。由于模塊化氣動機(jī)械手的驅(qū)動部件采用了特殊設(shè)計(jì)的
滾珠軸承, 使它具有高剛性、高強(qiáng)度及精確的導(dǎo)向精度。優(yōu)良的定位精度也是新一代氣動機(jī)械手的一個(gè)重要特點(diǎn)。模塊化氣動機(jī)械手使同一機(jī)械手可能由于應(yīng)用不同的模塊而具有不同的功能, 擴(kuò)大了機(jī)械手的應(yīng)用范圍, 是氣動機(jī)械手的一個(gè)重要的發(fā)展方向。智能閥島的出現(xiàn)對提高模塊化氣動機(jī)械手和氣動機(jī)器人的性能起到了十分重要的支持作用。因?yàn)橹悄荛y島本來就是模塊化的設(shè)備, 特別是緊湊型CP 閥島, 它對分散上的集中控制起了十分重要的作用, 特別對機(jī)械手中的移動模塊。
2.3 無給油化
為了適應(yīng)食品、醫(yī)藥、生物工程、電子、紡織、精密儀器等行業(yè)的無污染要求, 不加潤滑脂的不供油潤滑元件已經(jīng)問世。隨著材料技術(shù)的進(jìn)步, 新型材料(如燒結(jié)金屬石墨材料) 的出現(xiàn), 構(gòu)造特殊、用自潤滑材料制造的無潤滑元件, 不僅節(jié)省潤滑油、不污染環(huán)境, 而且系統(tǒng)簡單、摩擦性能穩(wěn)定、成本低、壽命長[16]。
2.4 機(jī)電氣一體化
由“可編程序控制器- 傳感器- 氣動元件”組成的典型的控制系統(tǒng)仍然是自動化技術(shù)的重要方面;發(fā)展與電子技術(shù)相結(jié)合的自適應(yīng)控制氣動元件, 使氣動技術(shù)從“開關(guān)控制”進(jìn)入到高精度的“反饋控制”; 省配線的復(fù)合集成系統(tǒng), 不僅減少配線、配管和元件, 而且拆裝簡單, 大大提高了系統(tǒng)的可靠性。
而今, 電磁閥的線圈功率越來越小, 而PLC 的輸出功率在增大, 由PLC直接控制線圈變得越來越可能。氣動機(jī)械手、氣動控制越來越離不開PLC, 而閥島技術(shù)的發(fā)展, 又使PLC 在氣動機(jī)械手、氣動控制中變得更加得心應(yīng)手[17-22]。
3 研究的基本內(nèi)容
本次畢業(yè)設(shè)計(jì)中主要完成的內(nèi)容包括:
3.1 氣動翻轉(zhuǎn)機(jī)械手的結(jié)構(gòu)設(shè)計(jì)
對氣動翻轉(zhuǎn)機(jī)械手的抓取系統(tǒng)、翻轉(zhuǎn)系統(tǒng)和連接系統(tǒng)進(jìn)行設(shè)計(jì),包括抓取部件、翻轉(zhuǎn)部件及連接部件和氣動執(zhí)行部件。根據(jù)氣動執(zhí)行部件來驅(qū)動抓取部件中的齒條運(yùn)動,帶動齒輪、齒條一起運(yùn)動,最終造成兩個(gè)齒條的相互運(yùn)動,實(shí)現(xiàn)外部的抓取功能。然后通過連接部件實(shí)現(xiàn)兩根軸在同一條線上的不同方向轉(zhuǎn)動,再通過翻轉(zhuǎn)部件實(shí)現(xiàn)兩個(gè)抓取物件同時(shí)翻轉(zhuǎn)的功能。
下面是可能方案一:
下面是可能方案2:
3.2 氣動翻轉(zhuǎn)機(jī)械手的三維建模、裝配
氣動翻轉(zhuǎn)機(jī)械手各部分的具體結(jié)構(gòu)設(shè)計(jì),利用Pro/Engineer軟件建立三維模型,進(jìn)行裝配分析,進(jìn)一步改進(jìn)結(jié)構(gòu)設(shè)計(jì)。分別對各個(gè)零件進(jìn)行建模,再裝配分析是否出現(xiàn)尺寸大小不配套還有運(yùn)動機(jī)構(gòu)卡死等問題,如果有的話必須調(diào)整方案或數(shù)據(jù)。最后通過改進(jìn)實(shí)現(xiàn)最后的裝配。裝配完后進(jìn)行投影二維圖紙并標(biāo)注,某些重要的零部件要進(jìn)行剖視處理。最后得到較好的裝配圖、二維圖紙和三維圖紙。
3.3 氣動翻轉(zhuǎn)機(jī)械手的運(yùn)動學(xué)仿真
通過建立的三維模型,進(jìn)行運(yùn)動學(xué)仿真分析,分抓取系統(tǒng)、氣動驅(qū)動和連接系統(tǒng)三個(gè)階段進(jìn)行動力學(xué)分析。運(yùn)動仿真時(shí)要看能不能運(yùn)動的起來,確保氣動翻轉(zhuǎn)機(jī)械手實(shí)現(xiàn)翻轉(zhuǎn)和氣動的功能。
4 研究思路方案、可行性分析及預(yù)期成果
本設(shè)計(jì)論文擬采用理論分析與三維建模與仿真實(shí)驗(yàn)的方法,在前人的基礎(chǔ)上,通過三維Pro/E環(huán)境完成氣動翻轉(zhuǎn)機(jī)械手的設(shè)計(jì)仿真,并對其進(jìn)行初步的運(yùn)動學(xué)分析。
4.1 研究思路方案
具體思路方案包含以下三個(gè)方面:
4.1.1 根據(jù)抓取物件大小與形狀對氣動翻轉(zhuǎn)機(jī)械手進(jìn)行結(jié)構(gòu)設(shè)計(jì)
包括整體移動系統(tǒng)、氣動驅(qū)動系統(tǒng)、抓取系統(tǒng)、連接及可翻轉(zhuǎn)系統(tǒng),基于以上理論可進(jìn)行對氣動翻轉(zhuǎn)機(jī)械手機(jī)構(gòu)原理分析。
4.1.2 氣動機(jī)械手Pro/ E三維建模、裝配
目前,隨著計(jì)算機(jī)輔助技術(shù)的不斷發(fā)展,三維造型軟件功能不斷完善,傳統(tǒng)的二維設(shè)計(jì)正逐漸被三維實(shí)體設(shè)計(jì)所代替。
Pro /Engineer是美國PTC公司于1988年開發(fā)的參數(shù)化設(shè)計(jì)系統(tǒng),是一套由設(shè)計(jì)至生產(chǎn)的機(jī)械自動化的三維實(shí)體模型(3DS)設(shè)計(jì)軟件,它不僅具有CAD 的強(qiáng)大功能,同時(shí)還具有CAE 和CAM 的功能,廣泛應(yīng)用于工業(yè)設(shè)計(jì)、機(jī)械設(shè)計(jì)、模具設(shè)計(jì)、機(jī)構(gòu)分析、有限元分析、加工制造及關(guān)系數(shù)據(jù)庫管理等領(lǐng)域。而且能同時(shí)支持針對同一產(chǎn)品進(jìn)行同步設(shè)計(jì),具有單一數(shù)據(jù)庫、全相關(guān)性、以特征為基礎(chǔ)的參數(shù)式模型和尺寸參數(shù)化等優(yōu)點(diǎn)。采用三維CAD 設(shè)計(jì)的產(chǎn)品,是和實(shí)物完全相同的數(shù)字產(chǎn)品,零部件之間的干涉一目了然,Pro/Engineer 軟件能計(jì)算零部件之間的干涉和體積,把錯(cuò)誤消滅在設(shè)計(jì)階段[9]。
運(yùn)用Pro/ E三維設(shè)計(jì)平臺,通過對特征工具的操作,避免高級語言的復(fù)雜編程,所開發(fā)設(shè)計(jì)出來的氣動翻轉(zhuǎn)機(jī)械手,便于研究人員通過對界面特征工具的操作,生成氣動翻轉(zhuǎn)機(jī)械手實(shí)體模型,甚至輸出所需要的工程圖及相關(guān)分析數(shù)據(jù)。這樣既可輔助研究人員完成其設(shè)計(jì)構(gòu)思、減輕勞動強(qiáng)度、提高效率和精度、改善視覺的立體效果,并可有效地縮短研制周期,提高設(shè)計(jì)制造的成功率;也為后續(xù)的3D運(yùn)動學(xué)仿真分析奠定了基礎(chǔ)。
4.1.3 氣動翻轉(zhuǎn)機(jī)械手Pro/ E運(yùn)動學(xué)仿真分析
運(yùn)動仿真是機(jī)構(gòu)設(shè)計(jì)的一個(gè)重要內(nèi)容, 在Pro /E的Mechanism模塊中,通過對機(jī)構(gòu)添加運(yùn)動副、驅(qū)動器使其運(yùn)動起來,來實(shí)現(xiàn)機(jī)構(gòu)的運(yùn)動仿真。通過仿真技術(shù)可以在進(jìn)行整體設(shè)計(jì)和零件設(shè)計(jì)后, 對各種零件進(jìn)行裝配后模擬機(jī)構(gòu)的運(yùn)動, 從而檢查機(jī)構(gòu)的運(yùn)動是否達(dá)到設(shè)計(jì)的要求, 可以檢查機(jī)構(gòu)運(yùn)動中各種運(yùn)動構(gòu)件之間是否發(fā)生干涉,實(shí)現(xiàn)機(jī)構(gòu)的設(shè)計(jì)與運(yùn)動軌跡校核。同時(shí), 可直接分析各運(yùn)動副與構(gòu)件在某一時(shí)刻的位置、運(yùn)動量以及各運(yùn)動副之間的相互運(yùn)動關(guān)系及關(guān)鍵部件的受力情況。在Pro /E環(huán)境下進(jìn)行機(jī)構(gòu)的運(yùn)動仿真分析,不需要復(fù)雜的數(shù)學(xué)建模、也不需要復(fù)雜的計(jì)算機(jī)語言編程,而是以實(shí)體模型為基礎(chǔ),集設(shè)計(jì)與運(yùn)動分析于一體,實(shí)現(xiàn)產(chǎn)品設(shè)計(jì)、分析的參數(shù)化和全相關(guān),反映機(jī)構(gòu)的真實(shí)運(yùn)動情況。
本次畢業(yè)設(shè)計(jì)以PTC公司的三維建模軟件Pro/E及其中的運(yùn)動學(xué)仿真功能建立氣動翻轉(zhuǎn)機(jī)械手的運(yùn)動仿真模型。首先在Pro/E中建立氣動翻轉(zhuǎn)機(jī)械手的三維CAD模型,然后完成氣動翻轉(zhuǎn)機(jī)械手的裝配,設(shè)置機(jī)構(gòu)運(yùn)動的初始位置,添加驅(qū)動和約束,進(jìn)行運(yùn)動仿真。在整個(gè)過程中,需要對建立模型等前續(xù)工作進(jìn)行不斷的修改和完善,才能生成所要求的氣動翻轉(zhuǎn)機(jī)械手的仿真模型。
4.2 可行性分析
抓取和翻轉(zhuǎn)系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)和研究是機(jī)械手方面研究的基礎(chǔ)。因此,對具有理想結(jié)構(gòu)的抓取和翻轉(zhuǎn)系統(tǒng)進(jìn)行運(yùn)動學(xué)和動力學(xué)、控制理論、信息集成等方面的研究是最有效也是最有意義的。因此,要進(jìn)行抓取和翻轉(zhuǎn)系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)研究,從幾何、運(yùn)動學(xué)、動力學(xué)及結(jié)構(gòu)關(guān)系等不同角度對機(jī)械手進(jìn)行研究, 使機(jī)械手能比較完美的在抓取和翻轉(zhuǎn)物體。在前人研究工作基礎(chǔ)上,本設(shè)計(jì)論文進(jìn)行氣動翻轉(zhuǎn)機(jī)械手設(shè)計(jì)與仿真,在基本原理上是可行的。
本設(shè)計(jì)的工作主要涉及力學(xué)、機(jī)械原理和機(jī)械設(shè)計(jì)等方面的知識,以及Pro/ E設(shè)計(jì)工具,本人已學(xué)習(xí)了這些相關(guān)課程,并取得了較好的成績,掌握了本設(shè)計(jì)所需的基本知識。
指導(dǎo)老師在氣動翻轉(zhuǎn)機(jī)械手的相關(guān)研究方面具有很多成功的經(jīng)驗(yàn),本設(shè)計(jì)的研究方法思路經(jīng)過深思熟慮,切實(shí)可行,能夠確保畢業(yè)設(shè)計(jì)的順利完成并取得預(yù)期的研究成果。
4.3 預(yù)期研究成果
設(shè)計(jì)出氣動翻轉(zhuǎn)機(jī)械手,完成三維建模和二維圖紙,并對其中一些零部件進(jìn)行剖視建模和仿真。通過仿真分析,保證設(shè)計(jì)能較好的滿足設(shè)計(jì)要求。
5 研究工作計(jì)劃
表1 研究工作計(jì)劃
起止時(shí)間
內(nèi)容
2012.11.15~2012.12.10
調(diào)研、信息匯總,文獻(xiàn)查閱分析
2012.12.10~2012.12.31
外文翻譯、文獻(xiàn)綜述、開題報(bào)告,并熟悉理論力學(xué)、機(jī)械原理等相關(guān)知識
2013.01.01~2013.01.10
提交開題報(bào)告、文獻(xiàn)綜述及外文翻譯
2013.01.11~2013.01.20
開題答辯
2013.01.21~2013.03.01
氣動翻轉(zhuǎn)機(jī)械手的整體方案設(shè)計(jì)
2013.03.02~2013.03.28
氣動翻轉(zhuǎn)機(jī)械手抓取和翻轉(zhuǎn)系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)及零部件設(shè)計(jì)
2013.03.29~2013.04.11
三維CAD建模、裝配、三維運(yùn)動學(xué)分析仿真
2013.04.12~2013.04.24
結(jié)構(gòu)改進(jìn)設(shè)計(jì)及畢業(yè)論文撰寫
2013.04.25~2013.05.02
完成并提交畢業(yè)論文
2013.05.03~2013.05.10
整理材料準(zhǔn)備答辯
參考文獻(xiàn)
[1]陶湘廳,袁銳波,羅璟.氣動機(jī)械手的應(yīng)用現(xiàn)狀及發(fā)展前景[J]. 機(jī)床與液壓, 2007, 35(8):226-228.
[2]楊振球,易孟林.高精度氣動機(jī)械手的研發(fā)及其應(yīng)用[J].液壓與氣動,2005:55-56.
[3]于傳浩,章滌峰. 一種氣動機(jī)械手夾持機(jī)構(gòu)的設(shè)計(jì)[J].液壓氣動與密封,2003,101(5):22-28.
[4]鮑燕偉,吳玉蘭.一種通用氣動機(jī)械手的控制設(shè)計(jì)[J].機(jī)床與液壓,2006, 9:166-169.
[5]吳淑英.機(jī)械手氣動手爪的結(jié)構(gòu)分析與選擇[J]. 制造技術(shù)與機(jī)床, 1998, 9:9-11.
[6]郭瑞潔,鐘康民.基于鉸桿-杠桿串聯(lián)增力機(jī)構(gòu)的內(nèi)夾持氣動機(jī)械手[J]. 液壓與氣動, 2009, 1:55-56.
[7]姚二民,王新杰,馬韜.一種氣動式機(jī)械手的設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造, 1996, 2:19-20.
[8]馬亮,張慶峰,顧寄南. 一種新型數(shù)控氣動機(jī)械手的設(shè)計(jì)與研究[J]. 機(jī)電工程,1998,28(2):162-171.
[9]林黃耀,杜彥亭,董霞.一種積木式氣動機(jī)械手的研究設(shè)計(jì)[J].液壓與氣動,2005,10:12-13.
[10]韋堯兵,姜明星,劉軍,剡昌鋒.氣動搬運(yùn)機(jī)械手虛擬設(shè)計(jì)[J].液壓與氣動,2009,5:4-6.
[11]A.J.G. Nuttall, A.J. Klein Breteler. Compliance effects in a parallel jaw gripper[J].Mechanism and Machine Theory,2003,38:1509–1522.
[12]Ho Choi, Muammer Koc. Design and feasibility tests of a flexible gripper based on inflatable rubber pockets[J]. International Journal of Machine Tools &Manufacture,2006,46:1350–1361.
[13]馬清艷,武文革,王彪,劉永姜,于大國. 多工位搬運(yùn)氣動機(jī)械手教學(xué)的應(yīng)用[J]. 電氣電子教學(xué)學(xué)報(bào),2012,34(2):74-76.
[14]聶彤.多機(jī)械手氣動系統(tǒng)的設(shè)計(jì)方法[J].液壓與氣動,2001,3:13-15.
[15]黃崇莉,劉菊蓉.分揀機(jī)械手設(shè)計(jì)[J].液壓與氣動,2010,12:94-96.
[16]梁承文,陳元旭,王儀明.基于GT-Designer的氣動包裝機(jī)械手的設(shè)計(jì)與研究[J].機(jī)械工程與自動化控制,2010:300-303.
[17]諶渭.基于PLC的氣動機(jī)械手手部結(jié)構(gòu)設(shè)計(jì)優(yōu)化方案[J].工程技術(shù),2001,5:109.
[18]朱梅.基于機(jī)械手的全氣動或電氣動控制設(shè)計(jì)[J].液壓與氣動,2004,1:3-4.
[19]李增強(qiáng), 章軍, 劉光元.蘋果被動抓取柔性機(jī)械手的結(jié)構(gòu)與分析包裝工程[J].2011,15(8):14-18.
[20]李庭貴. 氣動機(jī)械手搬運(yùn)物料精確定位控制系統(tǒng)設(shè)計(jì)[J].液壓與氣動,2012,1:54-56.
[21]張毅.氣動機(jī)械手概述[J].大觀周刊,2012,9:101-103.
[22]孫友剛,盛小明.氣動送料機(jī)械手變尺寸自動對中夾持器的設(shè)計(jì)[J].液壓與氣動,2011,6:54-55.
[23]吳慶達(dá).新型氣動機(jī)械手[J]. 中國學(xué)術(shù)期刊,1994,1:71.
[24]吳靜如. 一種氣動機(jī)械手及運(yùn)動設(shè)計(jì)[J].高科技產(chǎn)品研發(fā),1998,2:69-70.
摘 要
氣動機(jī)械手是以氣壓為驅(qū)動力的機(jī)械手。機(jī)械手并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機(jī)器特長的一種擬人的電子機(jī)械裝置,既有人對環(huán)境狀態(tài)的快速反應(yīng)和分析判斷能力,又有機(jī)器可長時(shí)間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,它主要是用以按固定程序抓取、搬運(yùn)物件或操作工具的自動操作裝置。所以氣動機(jī)械手能夠降低勞動強(qiáng)度,提高生產(chǎn)效率。但它的缺點(diǎn)也很明顯,因?yàn)闅怏w具有很大的可壓縮性, 要做到氣動機(jī)械手精確定位難度很大, 尤其是難以實(shí)現(xiàn)任意位置的多點(diǎn)定位;而且可壓縮性也帶來不能承受過重的負(fù)載的限制。傳統(tǒng)氣動系統(tǒng)只能靠機(jī)械定位置的調(diào)定位置而實(shí)現(xiàn)可靠定位, 并且其運(yùn)動速度只能靠單向節(jié)流閥單一調(diào)定, 經(jīng)常無法滿足許多設(shè)備的自動控制要求。
本課題經(jīng)過深刻的研究發(fā)現(xiàn),目前生產(chǎn)線上的氣動翻轉(zhuǎn)機(jī)械手一個(gè)運(yùn)動進(jìn)程只能實(shí)現(xiàn)一次抓取和翻轉(zhuǎn)功能的,感覺這種機(jī)械手效率太低。所以本次設(shè)計(jì)針對這個(gè)缺點(diǎn),設(shè)計(jì)出了一種氣動翻轉(zhuǎn)機(jī)械手,它在一個(gè)運(yùn)動進(jìn)程能實(shí)現(xiàn)兩次抓取和翻轉(zhuǎn),提高了工作效率,加快生產(chǎn)效率。全文由五章構(gòu)成:
關(guān)鍵詞:氣動裝置;機(jī)械手;翻轉(zhuǎn)裝置;夾瓶器;
Abstract
Pneumatic manipulator is a robot which is based on Pressure-driven. The robot is the combination of expertise and expertise of an anthropomorphic machine electro-mechanical device, not simply instead of manual labor. It owns both the rapid response to the environment state and the ability of a long continuous operation, high accuracy, and the resistance to harsh environments. It is mainly used to crawl at a fixed program, and carry objects and operate tools automatically. So Pneumatic Manipulator can reduce labor intensity, improve production efficiency. However, its disadvantages are obvious. Pneumatic Manipulator getting the precise positioning is very difficult, especially achieving multi-point positioning to anywhere because of the great compressibility of gas. Also, the compressibility limits a load to be too heavy. Traditional pneumatic system only relies on the set position of the mechanical giving location and reliable positioning and velocity which relies on a single one-way throttle. So it is often unable to meet many requirements of the automatic control equipment.
After a deep study, we found that the pneumatic flip robot on the current production line can only be achieved crawling and flip function once in a movement process whose efficiency is too low. So we design a pneumatic flip robot which can achieve the two crawling and flipping in a motion process. There is no doubt that the pneumatic flip robot can improve work efficiency and speed up the production efficiency.
Key words: pneumatic devices; robot; turning device; clip bottle;
目 錄
摘 要
Abstract
第1章 緒論 1
1.1 引言 1
1.2氣動機(jī)械手的發(fā)展 1
1.2.1國外氣動機(jī)械手狀況 1
1.2.2國內(nèi)氣動機(jī)械手情況 3
1.3發(fā)展趨勢 3
1.3.1重復(fù)高精度 3
1.3.2模塊化 3
1.3.3無給油化 4
1.3.4 機(jī)電氣一體化 4
1.4 機(jī)械手夾持部件結(jié)構(gòu)示意圖 4
1.4.1 外夾持型機(jī)械手 4
1.4.2 內(nèi)夾持型機(jī)械手 5
1.5國內(nèi)外氣動機(jī)械手設(shè)計(jì)舉例 5
1.5.1與模具切割相結(jié)合 5
1.5.2 機(jī)械手虛擬樣機(jī) 6
1.5.3 高精度機(jī)械手 6
第2章 氣動翻轉(zhuǎn)機(jī)械手總體設(shè)計(jì) 8
2.1 抓取系統(tǒng)的初步設(shè)計(jì) 8
2.2 翻轉(zhuǎn)系統(tǒng)的初步設(shè)計(jì) 8
2.2.1 錐齒輪電機(jī)翻轉(zhuǎn) 8
2.2.2 鏈輪鏈條氣缸翻轉(zhuǎn) 9
2.2.3 翻轉(zhuǎn)方案選擇 9
2.3氣動翻轉(zhuǎn)機(jī)械手的三維建模、裝配思路 10
2.3.1各部分零件設(shè)計(jì) 10
2.3.2 氣動翻轉(zhuǎn)機(jī)械手的運(yùn)動學(xué)仿真 10
2.3.3 研究思路方案、可行性分析及預(yù)期成果 11
第3章 氣動翻轉(zhuǎn)機(jī)械手重要零部件設(shè)計(jì)校核及其裝配 12
3.1氣缸的設(shè)計(jì)和校核 12
3.1.1 夾緊系統(tǒng)氣缸設(shè)計(jì)和校核 12
3.1.2 翻轉(zhuǎn)系統(tǒng)氣缸設(shè)計(jì)和校核 14
3.2齒輪設(shè)計(jì)和校核 15
3.2.1齒輪參數(shù)的選擇 15
3.2.2齒輪幾何尺寸確定 15
3.2.3齒根彎曲疲勞強(qiáng)度計(jì)算 16
3.3齒條的設(shè)計(jì)和校核 18
3.3.1齒條的設(shè)計(jì) 18
3.4 固定機(jī)架上的軸設(shè)計(jì)和校核 20
3.4.1求輸入軸上的功率、轉(zhuǎn)速和轉(zhuǎn)矩 20
3.4.2求作用在齒輪上的力 20
3.4.3 初步確定軸的最小直徑 21
3.4.4軸的結(jié)構(gòu)設(shè)計(jì) 21
3.4.5精確校核軸的疲勞強(qiáng)度 23
3.5圓錐滾子軸承的設(shè)計(jì)和校核 25
3.6鍵連接設(shè)計(jì)和校核 26
3.6.1輸入軸鍵計(jì)算 26
3.6.2中間軸鍵計(jì)算 26
3.6.3輸出軸鍵計(jì)算 27
3.7聯(lián)軸器的設(shè)計(jì)和校核 27
第4章 三維建模和運(yùn)動仿真 29
4.1 整體裝配圖 29
4.2夾緊系統(tǒng)裝配圖 29
4.3氣缸推動和翻轉(zhuǎn)系統(tǒng)裝配圖 30
4.4 氣缸推動夾緊裝置系統(tǒng)裝配圖 30
第5章 總結(jié)與展望 32
5.1總結(jié) 32
5.2展望 32
參考文獻(xiàn) 33
致 謝 35
浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)文獻(xiàn)綜述報(bào)告
班 級
機(jī)械設(shè)計(jì)制造及其自動化09(4)班
姓 名
楊永賀
課題名稱
氣動翻轉(zhuǎn)機(jī)械手部件設(shè)計(jì)
目 錄
1 前言
2 氣動機(jī)械手的發(fā)展
3 發(fā)展趨勢
4 氣動機(jī)械手原理及部件舉例
5 國內(nèi)優(yōu)秀氣動機(jī)械手設(shè)計(jì)舉例
6 總結(jié)
參考文獻(xiàn)
指導(dǎo)教師
審批意見
簽名:
年 月 日
氣動翻轉(zhuǎn)機(jī)械手部件設(shè)計(jì)
楊永賀
(機(jī)械設(shè)計(jì)制造及其自動化09(4)班 B09370126)
1 前言
氣動機(jī)械手的驅(qū)動力為氣壓,機(jī)械手并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機(jī)器特長的一種擬人的電子機(jī)械裝置,既有人對環(huán)境狀態(tài)的快速反應(yīng)和分析判斷能力,又有機(jī)器可長時(shí)間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,它主要是用以按固定程序抓取、搬運(yùn)物件或操作工具的自動操作裝置。所以氣動機(jī)械手能夠降低勞動強(qiáng)度,提高生產(chǎn)效率。但它的缺點(diǎn)也很明顯,因?yàn)闅怏w具有很大的可壓縮性, 要做到氣動機(jī)械手精確定位難度很大, 尤其是難以實(shí)現(xiàn)任意位置的多點(diǎn)定位;而且可壓縮性也帶來不能承受過重的負(fù)載的限制。傳統(tǒng)氣動系統(tǒng)只能靠機(jī)械定位置的調(diào)定位置而實(shí)現(xiàn)可靠定位, 并且其運(yùn)動速度只能靠單向節(jié)流閥單一調(diào)定, 經(jīng)常無法滿足許多設(shè)備的自動控制要求[1-2]。
近20年來,氣動技術(shù)的應(yīng)用領(lǐng)域迅速拓寬, 尤其是在各種自動化生產(chǎn)線上得到廣泛應(yīng)用。電氣可編程控制技術(shù)與氣動技術(shù)相結(jié)合, 使整個(gè)系統(tǒng)自動化程度更高, 控制方式更靈活, 性能更加可靠; 氣動機(jī)械手、柔性自動生產(chǎn)線的迅速發(fā)展, 對氣動技術(shù)提出了更多更高的要求;由于氣動脈寬調(diào)制技術(shù)具有結(jié)構(gòu)簡單、抗污染能力強(qiáng)和成本低廉等特點(diǎn), 國內(nèi)外都在大力研發(fā)氣動機(jī)械手[1]。
2 氣動機(jī)械手的發(fā)展
2.1 國外氣動機(jī)械手狀況
從各國的行業(yè)統(tǒng)計(jì)資料來看, 近30多年來, 氣動行業(yè)發(fā)展很快。20世紀(jì)70年代, 液壓與氣動元件的產(chǎn)值比約為9:1, 而30多年后的今天, 在工業(yè)技術(shù)發(fā)達(dá)的歐美、日本等國家, 該比例已達(dá)到6:4, 甚至接近5:5。
90年代初,有布魯塞爾皇家軍事學(xué)院Y.Bando教授領(lǐng)導(dǎo)的綜合技術(shù)部開發(fā)研制的電子氣動機(jī)器人--"阿基里斯"六腳勘測員,也被稱為FESTO的"六足動物"[12]。Y.Bando教授采用了世界上著名的德國FESTO生產(chǎn)的氣動元件、可編程控制器和傳感器等,創(chuàng)造了一個(gè)在荷馬史詩中最健壯最勇敢的希臘英雄--阿基里斯。它能在人不易進(jìn)入的危險(xiǎn)區(qū)域、污染或放射性的環(huán)境中進(jìn)行地形偵察。六腳電子氣動機(jī)器人的上方安裝了一個(gè)照相機(jī)來探視障礙物,能安全的繞過它,并在行走過程中記錄和收集數(shù)據(jù)。六腳電子氣動機(jī)器人行走的所有程序由FPC101-B可編程控制器控制,F(xiàn)PC101-B能在六個(gè)不同方向控制機(jī)器人的運(yùn)動,最大行走速度0.1m/s。通常如果有三個(gè)腳與地面接觸,機(jī)器人便能以一種平穩(wěn)的姿態(tài)行走,六腳中的每一個(gè)腳都有三個(gè)自由度,一個(gè)直線氣缸把腳提起、放下,一個(gè)擺動馬達(dá)控制腳伸展、退回,另一個(gè)擺動馬達(dá)則負(fù)責(zé)圍繞腳的軸心作旋轉(zhuǎn)運(yùn)動。每個(gè)氣缸都裝備了調(diào)節(jié)速度用的單向節(jié)流閥,使機(jī)械驅(qū)動部件在運(yùn)動時(shí)保持平穩(wěn),即在無級調(diào)速狀態(tài)下工作??刂茪飧椎拈y內(nèi)置在機(jī)器人體內(nèi),由FPC101-B可編程控制器控制。當(dāng)接通電源時(shí),氣動閥被切換到工作狀態(tài)位置,當(dāng)關(guān)閉電源時(shí),他們便回到初始位置。此外,操作者能在任何一點(diǎn)上停止機(jī)器人的運(yùn)動,如果機(jī)器人的傳感器在它的有效范圍內(nèi)檢測到障礙物,機(jī)器人也會自動停止[13]。
由漢諾威大學(xué)材料科學(xué)研究院設(shè)計(jì)的氣動攀墻機(jī)器人,它能在兩個(gè)相互垂直的表面上行走(包括從地面到墻面或者從墻面到天花板上)。該機(jī)器人軸心的圓周邊上裝備著等距離(根據(jù)步距設(shè)置)的吸盤和氣缸,一組吸盤吸力與另一組吸盤吸力的交替交換,類似腳踏似的運(yùn)動方式,使機(jī)器人產(chǎn)生旋轉(zhuǎn)步進(jìn)運(yùn)動。這種攀墻式機(jī)器人可被用于工具搬運(yùn)或執(zhí)行多種操作,如在核能發(fā)電站、高層建筑物氣動機(jī)械手位置伺服控制系統(tǒng)的研究或船舶上進(jìn)行清掃、檢驗(yàn)和安裝工作。機(jī)器人用遙控方式進(jìn)行半自動操作,操作者只需輸入運(yùn)行的目標(biāo)距離,然后計(jì)算機(jī)便能自動計(jì)算出必要的單步運(yùn)行。操作者可對機(jī)器人進(jìn)行監(jiān)控[7]。
國外的設(shè)計(jì)人員對于機(jī)械手的設(shè)計(jì)理念已經(jīng)非常成熟。Wright等人分析比較了機(jī)械手與人手抓取系統(tǒng),并把機(jī)械手分成與機(jī)器人手臂和控制系統(tǒng)相兼容、安全抓取和握持對象、準(zhǔn)確的完成復(fù)雜性任務(wù)三種類別。許多工廠的機(jī)械手的例子和機(jī)械手設(shè)計(jì)指導(dǎo)方針也被描述進(jìn)去了。Pham等人總結(jié)了機(jī)械手在不同應(yīng)用環(huán)境下設(shè)計(jì)方案應(yīng)該如何選擇。在他們的研究中,影響機(jī)械手如何選擇的變量如下:(a)成分,(b)任務(wù),(c)環(huán)境,(d)機(jī)械臂和控制條件?!俺煞帧边@個(gè)變量包括幾何、形狀、重量、表面質(zhì)量和溫度,這些因素都需要考慮好。對于可重構(gòu)系統(tǒng),他們以形狀和大小為標(biāo)準(zhǔn)又把這個(gè)變量分成了其他家族。對于“任務(wù)”這個(gè)變量,除了機(jī)械手的類型、不同組成部分的數(shù)量、準(zhǔn)確性及周期需要考慮外,還有主要的操作處理如抓取、握持、移動和放置都要考慮。在合適的地方設(shè)計(jì)核實(shí)的機(jī)械手,必須考慮所有的因素,而且驗(yàn)證性的測試必須要多做。為了減少疲勞效應(yīng),pham等人開發(fā)了一個(gè)用于選擇機(jī)械手的專家系統(tǒng)。瑞典E IE T R O IU X 公司于最近創(chuàng)造一種新產(chǎn)品一一氣動機(jī)械手。這種機(jī)械手以壓縮空氣為動力, 小巧靈便,它裝在一個(gè)圓形豎柱上, 該圓柱又能上下移動0 至150 mm , 左右移動350mm,機(jī)械手的最高速度為1000m/s,定位精度為500m/s;兩個(gè)機(jī)械手各能舉起5kg重物[14]。
圖1瑞典發(fā)明的氣動機(jī)械手
2.2 國內(nèi)氣動機(jī)械手情況
我國改革開放以來,氣動行業(yè)發(fā)展很快。1986年至2003年間,氣動元件產(chǎn)值的年第增率達(dá)24.2,高于中國機(jī)械工業(yè)產(chǎn)值平均年遞增率10的水平。雖然市場和應(yīng)用發(fā)展迅速,但是我國的氣動技術(shù)與歐美、日本等國相比,還存在著相當(dāng)大的差距。我國在氣動技術(shù)的研究與開發(fā)的方面,缺乏先進(jìn)的儀器與設(shè)備,研究開發(fā)手段落后,技術(shù)力量差,每年問世的新產(chǎn)品數(shù)量極其有限。在許多開發(fā)與研究領(lǐng)域還是空白,因此必須跟蹤國外氣動技術(shù)的最新發(fā)展動向,以減小差距,提高我國氣動技術(shù)的水平[8]。
3 發(fā)展趨勢
3.1 重復(fù)高精度
精度是指機(jī)器人、機(jī)械手到達(dá)指定點(diǎn)的精確程度, 它與驅(qū)動器的分辨率以及反饋裝置有關(guān)。重復(fù)精度是指如果動作重復(fù)多次, 機(jī)械手到達(dá)同樣位置的精確程度重復(fù)精度比精度更重要, 如果一個(gè)機(jī)器人定位不夠精確, 通常會顯示一個(gè)固定的誤差, 這個(gè)誤差是可以預(yù)測的, 因此可以通過編程予以校正。重復(fù)精度限定的是一個(gè)隨機(jī)誤差的范圍, 它通過一定次數(shù)地重復(fù)運(yùn)行機(jī)器人來測定[15] 。隨著微電子技術(shù)和現(xiàn)代控制技術(shù)的發(fā)展, 以及氣動伺服技術(shù)走出實(shí)驗(yàn)室和氣動伺服定位系統(tǒng)的成套化。氣動機(jī)械手的重復(fù)精度將越來越高, 它的應(yīng)用領(lǐng)域也將更廣闊, 如核工業(yè)和軍事工業(yè)等。
3.2 模塊化
有的公司把帶有系列導(dǎo)向驅(qū)動裝置的氣動機(jī)械手稱為簡單的傳輸技術(shù), 而把模塊化拼裝的氣動機(jī)械手稱為現(xiàn)代傳輸技術(shù)。模塊化拼裝的氣動機(jī)械手比組合
導(dǎo)向驅(qū)動裝置更具靈活的安裝體系。它集成電接口和帶電纜及氣管的導(dǎo)向系統(tǒng)裝置, 使機(jī)械手運(yùn)動自如。由于模塊化氣動機(jī)械手的驅(qū)動部件采用了特殊設(shè)計(jì)的
滾珠軸承, 使它具有高剛性、高強(qiáng)度及精確的導(dǎo)向精度。優(yōu)良的定位精度也是新一代氣動機(jī)械手的一個(gè)重要特點(diǎn)。模塊化氣動機(jī)械手使同一機(jī)械手可能由于應(yīng)用不同的模塊而具有不同的功能, 擴(kuò)大了機(jī)械手的應(yīng)用范圍, 是氣動機(jī)械手的一個(gè)重要的發(fā)展方向。智能閥島的出現(xiàn)對提高模塊化氣動機(jī)械手和氣動機(jī)器人的性能起到了十分重要的支持作用。因?yàn)橹悄荛y島本來就是模塊化的設(shè)備, 特別是緊湊型CP 閥島, 它對分散上的集中控制起了十分重要的作用, 特別對機(jī)械手中的移動模塊。
3.3 無給油化
為了適應(yīng)食品、醫(yī)藥、生物工程、電子、紡織、精密儀器等行業(yè)的無污染要求, 不加潤滑脂的不供油潤滑元件已經(jīng)問世。隨著材料技術(shù)的進(jìn)步, 新型材料(如燒結(jié)金屬石墨材料) 的出現(xiàn), 構(gòu)造特殊、用自潤滑材料制造的無潤滑元件, 不僅節(jié)省潤滑油、不污染環(huán)境, 而且系統(tǒng)簡單、摩擦性能穩(wěn)定、成本低、壽命長[16]。
3.4 機(jī)電氣一體化
由“可編程序控制器-傳感器-氣動元件”組成的典型的控制系統(tǒng)仍然是自動化技術(shù)的重要方面;發(fā)展與電子技術(shù)相結(jié)合的自適應(yīng)控制氣動元件, 使氣動技術(shù)從“開關(guān)控制” 進(jìn)入到高精度的“ 反饋控制”; 省配線的復(fù)合集成系統(tǒng), 不僅減少配線、配管和元件, 而且拆裝簡單, 大大提高了系統(tǒng)的可靠性。
而今, 電磁閥的線圈功率越來越小, 而PLC 的輸出功率在增大, 由PLC直接控制線圈變得越來越可能。氣動機(jī)械手、氣動控制越來越離不開PLC, 而閥島技術(shù)的發(fā)展, 又使PLC 在氣動機(jī)械手、氣動控制中變得更加得心應(yīng)手[17-22]。
4 氣動機(jī)械手原理及部件舉例
4.1 驅(qū)動力為由氣缸驅(qū)動
圖2為一常用氣動機(jī)械手的結(jié)構(gòu)示意圖。有四個(gè)氣缸組成,能在三個(gè)坐標(biāo)內(nèi)工作,控制的執(zhí)行元件數(shù)目是四個(gè):即由立柱回轉(zhuǎn)缸A實(shí)現(xiàn)機(jī)械手正、反轉(zhuǎn)的運(yùn)動,立柱升降缸B實(shí)現(xiàn)機(jī)械手下降、升起的運(yùn)動,夾緊缸C實(shí)現(xiàn)機(jī)械手夾緊、松開的運(yùn)動,伸縮缸D實(shí)現(xiàn)機(jī)械手伸出、縮回的運(yùn)動。驅(qū)動方式為在開口處通入空氣,即可實(shí)現(xiàn)運(yùn)轉(zhuǎn)。
圖2氣缸驅(qū)動的機(jī)械手舉例1
在機(jī)械手加持物料時(shí),需要?dú)飧證、D兩個(gè)聯(lián)動實(shí)現(xiàn):即機(jī)械手先生出至物料處、再夾緊物料,反向需先松開物料、再收回機(jī)械手的運(yùn)動。在加工和裝配零件時(shí),存在對氣缸C的固定氣缸D活塞桿的運(yùn)動限位等問題。而且整體結(jié)構(gòu)比較大,對一些受結(jié)構(gòu)限制的場合,采用這種夾持結(jié)構(gòu)就存在一些不足[3]。
圖3示是用于某設(shè)備上的機(jī)械手的結(jié)構(gòu)示意圖, 它由4個(gè)氣缸( 3個(gè)滑動氣缸, 1個(gè)擺動氣缸組成, 可在3個(gè)坐標(biāo)內(nèi)工作, 圖中A 為夾緊氣缸,其活塞退回時(shí)夾緊工件, 活塞桿伸出時(shí)松開工件。B缸為長臂伸縮缸, 可實(shí)現(xiàn)伸出和縮回動作。C 缸為立柱升降缸。D缸為立柱回轉(zhuǎn)缸。圖中的發(fā)信裝置為行程閥[4]。
圖3氣缸驅(qū)動的機(jī)械手舉例2
4.2 機(jī)械手夾持部件結(jié)構(gòu)示意圖
4.2.1 外夾持型機(jī)械手
圖4為一種較簡單平行開閉手爪的結(jié)構(gòu)。氣缸的活塞有壓縮空氣驅(qū)動,通過活塞桿7上的支點(diǎn)軸2帶動撥叉3轉(zhuǎn)動,再通過傳動軸4使手爪1沿導(dǎo)向槽做平行移動,圖中為雙作用氣缸,也可為單作用氣缸返回運(yùn)動靠彈簧完成。該結(jié)構(gòu)的特點(diǎn)是重量輕,體積小,最小型重量為75g,最大型為300g,因此,可以與小型機(jī)械手配套使用[5]。
圖4外夾持型鉸鏈?zhǔn)狡叫虚_閉手爪結(jié)構(gòu)示意圖
4.2.2 內(nèi)夾持型機(jī)械手
前面介紹的是外加持機(jī)械手,下面介紹一種內(nèi)加持的機(jī)械手。
圖5所示的基于鉸桿-杠桿串聯(lián)增力機(jī)構(gòu)的內(nèi)夾持氣動機(jī)械手, 主要由氣壓缸、鉸桿1 和1c、杠桿2和2c組成。當(dāng)壓縮空氣的方向控制閥處于圖1所示左位工作狀態(tài)時(shí), 氣壓缸的左腔即無桿腔進(jìn)入壓縮空氣, 推動活塞向右運(yùn)動, 導(dǎo)致鉸桿1和1c的壓力角A變小, 通過角度效應(yīng)第一次把輸入力放大, 然后傳遞到恒增力杠桿機(jī)構(gòu)2和2c上, 再一次將輸入力進(jìn)行放大, 變?yōu)閵A持工件的作用力F。當(dāng)方向控制閥處于右位工作狀態(tài)時(shí), 氣壓缸的右腔即有桿腔進(jìn)入壓空氣, 推動活塞向左運(yùn)動, 夾持機(jī)構(gòu)松開工件[6-21]。
圖5內(nèi)夾持型機(jī)械手舉例
5 國內(nèi)優(yōu)秀氣動機(jī)械手設(shè)計(jì)舉例
5.1 與模具切割相結(jié)合
第一個(gè)是鄭州輕工業(yè)學(xué)院和紡織工學(xué)院的老師設(shè)計(jì)的機(jī)械手,如圖6所示,它是與磨具切割想配合的一種設(shè)計(jì)。如圖所示,機(jī)械手由手部——手指(3)和夾緊氣缸(1)、手腕——拉伸臂(2)和拉伸氣缸(4)、手臂——剝離臂(5)和剝離氣缸(6)以及底座(D)組成。機(jī)械手的手部采用單支點(diǎn)回轉(zhuǎn)式活動手指配合以固定手指,在夾緊氣缸(1)的作用下夾持模組橡膠襯圈上的“凸耳”。為使手指在夾持襯圈的過程中不出現(xiàn)滑脫現(xiàn)象,特在手指端部加工有鋸齒型斜槽,拉伸臂(2)和剝離臂(5)在后部鉸支的拉伸氣缸(4)和剝離氣缸(6)的作用下,分別繞支點(diǎn)(B)和支點(diǎn)(C)擺動,同時(shí)在切割裝置的配合下,完成襯圈的拉伸、切割和剝離任務(wù)。機(jī)械手通過底座(D)與自動剝離機(jī)有機(jī)相連,與剝離機(jī)其他機(jī)構(gòu)協(xié)調(diào)動作[9]。
圖6 氣動式機(jī)械手
5.2 機(jī)械手虛擬樣機(jī)
第二種如圖所示,設(shè)計(jì)的新型氣動機(jī)械手的虛擬樣機(jī)如圖1所示,其中腰部轉(zhuǎn)動關(guān)節(jié)由比例流量閥式擺動氣缸實(shí)現(xiàn); 大臂和中臂之間的俯仰運(yùn)動由比例流量閥驅(qū)動單出桿雙作用直線汽缸實(shí)現(xiàn)。而中臂與小臂之間由可調(diào)支撐件來手動調(diào)節(jié)角度, 并配合調(diào)節(jié)小臂的螺紋連接件, 來控制機(jī)械手末端在笛卡爾空間坐標(biāo)系中的位置。手抓部位的夾持力通過控制直線氣缸來調(diào)節(jié)。
圖7 機(jī)械手虛擬樣機(jī)
在設(shè)計(jì)的機(jī)械手虛擬樣機(jī)中, 底座與軀干以固定副相連, 軀干與大臂以轉(zhuǎn)動副相連, 大臂與中臂以轉(zhuǎn)動副相連, 中臂、可調(diào)支撐和小臂以固定副相連, 小臂與手腕以固定副相連, 直線氣缸部位以平動副相連, 添加約束后如圖所示[10]。
5.3 高精度機(jī)械手
第三種如圖8所示。機(jī)械手具備有:水平缸X軸方向移動、垂直升降缸Y軸方向運(yùn)動、伸縮缸Z軸方向伸縮及伸擺缸繞Z軸選裝四個(gè)自由度(手指開合不記)。由于手臂采用懸臂方式,活塞缸所承受的徑向彎曲力矩較大,為解決這個(gè)問題,我們用了具有良好導(dǎo)向性能的高精度導(dǎo)軌型無桿缸和導(dǎo)向型伸縮缸。手指采用兩只肘潔是卡爪,通過鋁合金奧通和伸擺缸連接,增強(qiáng)了伸縮氣缸的導(dǎo)向型和抗彎能力。手指采用自行設(shè)計(jì)的V型塊,也可以根據(jù)被夾工件實(shí)際形狀要求設(shè)計(jì)成不同的結(jié)構(gòu)。無桿缸、升降缸和伸擺缸通過硬質(zhì)鋁合金連接板連接,結(jié)構(gòu)簡單,便于加工和連接。位移傳感器和無桿缸相連,檢測X軸方向位移 [11]。
圖8 氣動機(jī)械手結(jié)構(gòu)圖
6 總結(jié)
經(jīng)過一段時(shí)間的學(xué)習(xí)和文獻(xiàn)參考,我對氣動機(jī)械手有了基本的認(rèn)識,對機(jī)械手的發(fā)展歷程以及未來的研發(fā)趨勢也有了一定的了解。我國的氣動機(jī)械手起步較晚,但涌現(xiàn)出了一大批構(gòu)思巧妙、設(shè)計(jì)精良的氣動機(jī)械手,爆破[19-20]、搬運(yùn)、夾持的研究也取得了很大的成果。本課題希望在原有的氣動翻轉(zhuǎn)機(jī)械手加以改進(jìn),提高它的生產(chǎn)效率。
參考文獻(xiàn)
[1]陶湘廳,袁銳波,羅璟.氣動機(jī)械手的應(yīng)用現(xiàn)狀及發(fā)展前景[J]. 機(jī)床與液壓, 2007, 35(8):226-228.
[2]楊振球,易孟林.高精度氣動機(jī)械手的研發(fā)及其應(yīng)用[J].液壓與氣動,2005:55-56.
[3]于傳浩,章滌峰. 一種氣動機(jī)械手夾持機(jī)構(gòu)的設(shè)計(jì)[J].液壓氣動與密封,2003,101(5):22-28.
[4]鮑燕偉,吳玉蘭.一種通用氣動機(jī)械手的控制設(shè)計(jì)[J].機(jī)床與液壓,2006, 9:166-169.
[5]吳淑英.機(jī)械手氣動手爪的結(jié)構(gòu)分析與選擇[J]. 制造技術(shù)與機(jī)床, 1998, 9:9-11.
[6]郭瑞潔,鐘康民.基于鉸桿-杠桿串聯(lián)增力機(jī)構(gòu)的內(nèi)夾持氣動機(jī)械手[J]. 液壓與氣動, 2009, 1:55-56.
[7]姚二民,王新杰,馬韜.一種氣動式機(jī)械手的設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造, 1996, 2:19-20.
[8]馬亮,張慶峰,顧寄南. 一種新型數(shù)控氣動機(jī)械手的設(shè)計(jì)與研究[J]. 機(jī)電工程,1998,28(2):162-171.
[9]林黃耀,杜彥亭,董霞.一種積木式氣動機(jī)械手的研究設(shè)計(jì)[J].液壓與氣動,2005,10:12-13.
[10]韋堯兵,姜明星,劉軍,剡昌鋒.氣動搬運(yùn)機(jī)械手虛擬設(shè)計(jì)[J].液壓與氣動,2009,5:4-6.
[11]A.J.G. Nuttall, A.J. Klein Breteler. Compliance effects in a parallel jaw gripper[J].Mechanism and Machine Theory,2003,38:1509–1522.
[12]Ho Choi, Muammer Koc. Design and feasibility tests of a flexible gripper based on inflatable rubber pockets[J]. International Journal of Machine Tools &Manufacture,2006,46:1350–1361.
[13]馬清艷,武文革,王彪,劉永姜,于大國. 多工位搬運(yùn)氣動機(jī)械手教學(xué)的應(yīng)用[J]. 電氣電子教學(xué)學(xué)報(bào),2012,34(2):74-76.
[14]聶彤.多機(jī)械手氣動系統(tǒng)的設(shè)計(jì)方法[J].液壓與氣動,2001,3:13-15.
[15]黃崇莉,劉菊蓉.分揀機(jī)械手設(shè)計(jì)[J].液壓與氣動,2010,12:94-96.
[16]梁承文,陳元旭,王儀明.基于GT-Designer的氣動包裝機(jī)械手的設(shè)計(jì)與研究[J].機(jī)械工程與自動化控制,2010:300-303.
[17]諶渭.基于PLC的氣動機(jī)械手手部結(jié)構(gòu)設(shè)計(jì)優(yōu)化方案[J].工程技術(shù),2001,5:109.
[18]朱梅.基于機(jī)械手的全氣動或電氣動控制設(shè)計(jì)[J].液壓與氣動,2004,1:3-4.
[19]李增強(qiáng), 章軍, 劉光元.蘋果被動抓取柔性機(jī)械手的結(jié)構(gòu)與分析包裝工程[J].2011,15(8):14-18.
[20]李庭貴. 氣動機(jī)械手搬運(yùn)物料精確定位控制系統(tǒng)設(shè)計(jì)[J].液壓與氣動,2012,1:54-56.
[21]張毅.氣動機(jī)械手概述[J].大觀周刊,2012,9:101-103.
[22]孫友剛,盛小明.氣動送料機(jī)械手變尺寸自動對中夾持器的設(shè)計(jì)[J].液壓與氣動,2011,6:54-55.
[23]吳慶達(dá).新型氣動機(jī)械手[J]. 中國學(xué)術(shù)期刊,1994,1:71.
[24]吳靜如. 一種氣動機(jī)械手及運(yùn)動設(shè)計(jì)[J].高科技產(chǎn)品研發(fā),1998,2:69-70.
11
收藏