【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【GC系列】為店主整理分類的代號,與課題內(nèi)容無關,請忽視
嘉興學院畢業(yè)設計(論文)開題報告
題目: 車載輪椅升降機設計
學院名稱:機電工程學院 專業(yè)班級: 學生姓名:
1選題的背景、意義
20世紀60年代以來,隨著不斷變化的社會運輸需求,社會顯著提高生產(chǎn)力水平,傳統(tǒng)的處理方式已經(jīng)無法滿足人們的需求,也是貨運物流的快速增長,貨物裝卸也將增加的量的大噸位貨車或平板車,因為貨物質量大,客艙地板離地面高,全國交通逐漸轉移速度快,效率高,成本低,運輸?shù)陌l(fā)展方向已逐漸走向專業(yè)化方向。在此基礎上,車輛裝卸升降尾板是運輸行業(yè)的快速發(fā)展的產(chǎn)物。它屬于一種新型的運輸和裝卸工具,近年來在中國的大部分地區(qū)被廣泛使用,如電信,鐵路,航空,水利,電力,礦山,商業(yè),軍工等行業(yè)。車載輪椅升降機,已經(jīng)改變了一直使用的人工運輸和處理方法,不僅提高了工作效率,而且還節(jié)省了大量的人力消耗,減輕勞動強度。
2相關研究的最新成果及動態(tài)
目前生產(chǎn)的車載輪椅升降機企業(yè)主要是瑞典ZEPRO公司,東莞,廣東省達機械制造有限公司,有限公司,深圳市凱卓立液壓設備有限公司,廣東省,陜西省漢中市汽車液壓尾門有限責任公司。隨著生產(chǎn)力水平的不斷提高,這些產(chǎn)品將逐漸被廣泛推廣和應用。
許多郵局站平臺,由于建設較早,受到很多限制現(xiàn)在適應裝載運輸車輛裝卸輪椅,結果每次裝卸必須完成由少數(shù)人走到一起,隨著經(jīng)濟的的不斷發(fā)展,電子郵件和包裹量的不斷增加,貨物處理越來越困難。如果使用自動化設備來代替人力搬運和運輸,既要加快裝卸過程中,還通過簡單的裝卸,提高經(jīng)濟效益,汽車液壓升降,能夠成功地完成了裝載和卸載工作大大提高了裝卸和運輸條件,提高工作效率,減輕了勞動強度,節(jié)省了大量的人力資源的枯竭,而且安全可靠。由于該設備是易于使用,簡單的結構,可安裝在任何卡車和拖車的尾部,所以。超市配送中心的空軍貨物運輸,金融運輸,物流及運輸,以及個體運輸?shù)阮I域具有很大的市場前景。
車輛尾部升力一個三角形,采用四連桿機構,實現(xiàn)裝卸貨物的升降平臺。車輛尾部升力結構簡單,操作方便,安全,可靠,噪音低。因此,本課題的研究具有現(xiàn)實意義。
3課題的研究內(nèi)容及擬采取的研究方法(技術路線)、研究難點及預期達到的目標
包括車載輪椅升降機機械的設計和功能原理的機械設計和篩選方案。從動力源,驅動機構驅動模式,執(zhí)行機構,整個系統(tǒng)的總體規(guī)劃,解決機構系統(tǒng)建模,動態(tài)綜合分析,系統(tǒng)控制等問題。
為了確保貨物的安全,尾板,在操作過程中保持穩(wěn)定。的功率的機制橫梁伸縮缸,同時考慮到隔室結構,燃料箱應安裝在底盤下面,在車廂內(nèi)。
車載輪椅的工作流程:裝載輪椅 – 舉升- 卸載-車后轎廂關閉,因此,在吊裝貨物的過程中,欄板必須保持水平平移,否則,貨物可能是從下跌的尾板被損壞。此外,在各種因素的影響,產(chǎn)品的設計必須滿足以下要求:
(1)尾板舉升過程保持水平;
(2)尾板在完成舉升后可與車廂自動合攏;
(3)尾板舉升速度適中(80mm/sec左右),舉升下降平穩(wěn);
(4)尾板合攏角速度適中(10°/sec左右),且合攏展開平穩(wěn);
(5)最大起重量為0.5T;
(6)舉升機構的最小傳動角γmin≥40°;
(7)舉升、合攏所用動力部件采用伸縮油缸;
(8)油缸應安裝在車廂下面;
(9)油缸承受最大載荷適中;
(10)尾板要便于安裝。
4研究工作詳細進度和安排
2015.1.16~2015.2.24 接受任務,熟悉內(nèi)容,完成文獻綜述和英文翻譯;
2015.2.25~2014.03.28 完成開題報告,畢業(yè)實習、方案確定;
2014.03.29~2014.04.20 完成設計圖樣和說明書初稿;
2014.04.20~2014.04.30 修改圖樣、說明書,完成二稿;2012.05.01~2012.05.10 修改、檢查全部資料,打印、上交資料;
2014.05.11~2014.05.25 準備論文答辯。
5參考文獻
1] 濮良貴,紀名剛.機械設計第八版[M].北京:高等教育出版社,2006.12
[2] 趙大興.工程制圖[M]. 北京:高等教育出版社,2004.7
[3] 聯(lián)合編寫組.機械設計手冊(中冊)[M].北京:化學工業(yè)出版社,1987.2
[4] 顧熙棠,金瑞琪,劉瑾.金屬切削機床[M].上海:上海科學技術出版社,1993.2
[5] 機械設計手冊編委會. 機械設計手冊新版[M]. 北京:機械工業(yè)出版社, 2004.8
[6] 余仲裕. 數(shù)控機床維修[M]. 北京:機械工業(yè)出版社,2001.2
[7] 許福玲,陳堯明.液壓與氣壓傳動第二版[M].北京:機械工業(yè)出版社,2006.1
[8] 唐保寧.機械設計與制造簡明手冊[M]. 同濟大學出版社,1998.2
[9] 戴曙. 金屬切削機床[M]. 北京:機械工業(yè)出版社,1993.5
[10] 陳嬋娟. 數(shù)控車床設計[M]. 北京:化學工業(yè)出版社,2006.3
[11] 王愛玲. 現(xiàn)代數(shù)控機床[M]. 北京:國防工業(yè)出版社,2003.3
[12]郭榮第.金屬切削原理與刀具[M].哈爾濱:哈爾濱工業(yè)大學出版社,2007.7
[13]、Paul Kenneth.21st Century Manufacturing[M].Prentice Hall and TingHua University Press,2002
[14]、Robert L. Norton:Design of Machinery An Introduction to the Synthesis and Analysis of Mechanisms and Machines[M]. McGraw-Hill Education companies, Inc., and Chine Machine Press.2003.
指導教師審核意見:
簽字: 年 月 日
研究所意見:
簽字: 年 月 日
學院意見:
簽字: 年 月 日
寧嘉興學院南湖學院
畢業(yè)設計(論文)
車載輪椅升降機設計
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
摘 要
本文介紹了車載輪椅升降機國內(nèi)形勢和發(fā)展趨勢,從系統(tǒng)設計,系統(tǒng)的分析和設計的主線出發(fā),突出整體設計的機械系統(tǒng)動力學探索體系統(tǒng)動力學建模技術集成分析系統(tǒng)控制和其他問題明確的選擇和確定具體的執(zhí)行機構,所述數(shù)學模型,通過產(chǎn)生機構尺寸控制和調整的模型參數(shù)的模型表示出來的特性的基礎上,在此項目中的焦點一系列經(jīng)過反復探索,展示了最終建立有針對性的方法,使用相結合的理論分析比喻是更方便的解決方案處理車輛液壓升降調節(jié)器設計問題。
本文介紹了平面連桿機構介紹的方法求解最優(yōu)設計方法和工程設計問題,基于對車輛的車載輪椅升降機降驅動力分析的一般過程,一般設計時要考慮清楚在體內(nèi)的主要因素模擬的數(shù)學模型,提供了可靠的基礎,該模型通過建立機構有權確定目標函數(shù),以確定運行的計算機優(yōu)化程序,用于車輛裝卸過程中的制約是完整的液壓升降調節(jié)器優(yōu)化設計結果,以證明使用此測試平臺的可靠性,通過實驗計算出的值與實際測量值的比較分析證實,該計算值是可靠的方式獲得的,通過改變一些參數(shù)的優(yōu)化結果和在同一時間存在致動器考慮液壓控制系統(tǒng)的影響因素,以調整和完善執(zhí)行機構應確定。
本液壓系統(tǒng)以傳遞動力為主,保證足夠的動力是其基本要求。另外,還要考慮系統(tǒng)的穩(wěn)定性、可靠性、可維護性、安全性及效率。其中穩(wěn)定是指系統(tǒng)工作時的運動平穩(wěn)性及系統(tǒng)性能的穩(wěn)定性(如環(huán)境溫度對油液的影響等因素)??煽啃允侵赶到y(tǒng)不因意外的原因而無法工作(如油管破裂、無電等情況)??删S護性是指系統(tǒng)盡可能簡單,元件盡可能選標準件,結構上盡可能使維護方便.安全性是指不因液壓系統(tǒng)的故障導致后車廂蓋的其它事故.效率是指液壓系統(tǒng)的各種能量損失盡可能的小。上述要求中,除滿足系統(tǒng)的動力要求外,最重要的是保證系統(tǒng)的安全性和可靠性。
關鍵詞:液壓系統(tǒng),升降機構
44
Abstract
This article describes the car handling hydraulic lifts domestic situation and development trend , this departure from the system design to system analysis and design of the main line , highlighting the overall design of the mechanical system dynamics to explore body system dynamics modeling techniques integrated analysis system control and other issues clear choices and determine the specific implementing agency is the focus of this project on the basis of the characteristics of the actuator according to the actuator models that come out with the same mathematical model to control and adjust the model parameters through generating mechanism dimension series after repeated exploration demonstrated the eventual establishment of a targeted approach using a combination of theoretical analysis analogy is more convenient solution to vehicle handling hydraulic lift actuator design problems.
This paper introduces the general design of planar linkage overview of the methods for solving the optimal design methods and the general process of engineering design problems Based on vehicle handling hydraulic lift actuator force analysis made ??clear in the body of the main factors to consider when modeling a mathematical model for the right to provide a reliable basis for the model through the establishment of institutions to determine the objective function to determine the constraints running computer optimization procedures for vehicle loading and unloading process is complete hydraulic lift actuator optimal design results in order to prove the reliability of this test platform for the use of existing by changing some parameters of the optimization results for the calculated value by experiments and the actual measured value obtained by comparative analysis confirmed that this calculated value is reliable and at the same time that the actuator should be determined considering the influence factors of the hydraulic control system to adjust and improve executive body。
The hydraulic system to transfer power, ensure adequate power is its basic requirement. In addition, consider the system stability, reliability, maintainability, safety and efficiency. The stabilizing means when the system works steady motion and system performance stability (such as environmental temperature on the influence of oil etc). Reliability refers to the system is not due to accident reason to work ( such as tubing rupture without electricity, etc. ). Maintainability is referred to the system as simple as possible, element is chosen as far as possible standard parts, structure as much as possible so that the maintenance is convenient. Security is not due to the fault of the hydraulic system causes the antenna frame collapse or other accidents (such as the drop out of control, antenna due to gravity acceleration whereabouts ) . Efficiency refers to the hydraulic system of the various energy loss as small as possible. The above requirements, in addition to meet the power requirements, the most important thing is to ensure the safety and reliability of the system.
Keywords: hydraulic system, lifting mechanism
目 錄
摘 要 II
Abstract III
目 錄 V
第1章 緒論 1
1.1課題研究的目的 1
1.2 研究現(xiàn)狀 1
1.3 本課題的研究內(nèi)容 2
第2章 車載輪椅升降機機構方案分析 4
2.1 方案一 4
2.2方案二 4
2.3 方案三 5
2.4方案四 5
2.5 方案確定 6
第3章 車載輪椅升降機機構機械結構設計 7
3.1 汽車尾部參數(shù) 7
3.2 尾板尺寸設計 7
3.3 設計尺寸 9
3.4 機構運動分析 9
3.5 受力分析 13
3.6 液壓原理圖 15
第4章 液壓系統(tǒng)設計計算 17
4.1 舉升液壓缸的設計 17
4.2 關門液壓缸的設計 20
4.3 活塞的設計 22
4.4 導向套的設計與計算 23
4.5 端蓋和缸底的設計與計算 24
4.6 缸體長度的確定 26
4.7 緩沖裝置的設計 26
4.8 排氣裝置 26
4.9 密封件的選用 28
4.10 防塵圈 30
4.11 液壓缸的安裝連接結構 30
第5章 液壓泵的參數(shù)計算 32
第6章 電動機的選擇 32
第7章 液壓元件的選擇 34
7.1 液壓閥及過濾器的選擇 34
7.2 油管的選擇 35
7.3 油箱容積的確定 35
第8章 驗算液壓系統(tǒng)性能 36
8.1 壓力損失的驗算及泵壓力的調整 36
8.2 液壓系統(tǒng)的發(fā)熱和溫升驗算 38
總結 40
參考文獻 42
致謝 43
第1章 緒論
1.1課題研究的目的
20世紀60年代以來,隨著不斷變化的社會運輸需求,社會顯著提高生產(chǎn)力水平,傳統(tǒng)的處理方式已經(jīng)無法滿足人們的需求,也是貨運物流的快速增長,貨物裝卸也將增加的量的大噸位貨車或平板車,因為貨物質量大,客艙地板離地面高,全國交通逐漸轉移速度快,效率高,成本低,運輸?shù)陌l(fā)展方向已逐漸走向專業(yè)化方向。在此基礎上,車輛裝卸升降尾板是運輸行業(yè)的快速發(fā)展的產(chǎn)物。它屬于一種新型的運輸和裝卸工具,近年來在中國的大部分地區(qū)被廣泛使用,如電信,鐵路,航空,水利,電力,礦山,商業(yè),軍工等行業(yè)。車載輪椅升降機,已經(jīng)改變了一直使用的人工運輸和處理方法,不僅提高了工作效率,而且還節(jié)省了大量的人力消耗,減輕勞動強度。
1.2 研究現(xiàn)狀
目前生產(chǎn)的車載輪椅升降機企業(yè)主要是瑞典ZEPRO公司,東莞,廣東省達機械制造有限公司,有限公司,深圳市凱卓立液壓設備有限公司,廣東省,陜西省漢中市汽車液壓尾門有限責任公司。隨著生產(chǎn)力水平的不斷提高,這些產(chǎn)品將逐漸被廣泛推廣和應用。
研究意義:
許多郵局站平臺,由于建設較早,受到很多限制現(xiàn)在適應裝載運輸車輛裝卸作業(yè),結果每次裝卸必須完成由少數(shù)人走到一起,隨著經(jīng)濟的的不斷發(fā)展,電子郵件和包裹量的不斷增加,貨物處理越來越困難。如果使用自動化設備來代替人力搬運和運輸,既要加快裝卸過程中,還通過簡單的裝卸作業(yè),提高經(jīng)濟效益,汽車液壓升降,能夠成功地完成了裝載和卸載工作大大提高了裝卸和運輸條件,提高工作效率,減輕了勞動強度,節(jié)省了大量的人力資源的枯竭,而且安全可靠。由于該設備是易于使用,簡單的結構,可安裝在任何卡車和拖車的尾部,所以。超市配送中心的空軍貨物運輸,金融運輸,物流及運輸,以及個體運輸?shù)阮I域具有很大的市場前景。
車輛尾部升力一個三角形,采用四連桿機構,實現(xiàn)裝卸貨物的升降平臺。車輛尾部
升力結構簡單,操作方便,安全,可靠,噪音低。因此,本課題的研究具有現(xiàn)實意
義。
1.3 本課題的研究內(nèi)容
包括車載輪椅升降機機械的設計和功能原理的機械設計和篩選方案。從動力源,驅動機構驅動模式,執(zhí)行機構,整個系統(tǒng)的總體規(guī)劃,解決機構系統(tǒng)建模,動態(tài)綜合分析,系統(tǒng)控制等問題。
為了確保貨物的安全,尾板,在操作過程中保持穩(wěn)定。的功率的機制橫梁伸縮缸,同時考慮到隔室結構,燃料箱應安裝在底盤下面,在車廂內(nèi)。
升降尾板的工作流程:裝載的貨物 - 載貨電梯 - 卸載貨物 - 行李箱蓋關閉,因此,在吊裝貨物的過程中,欄板必須保持水平平移,否則,貨物可能是從下跌的尾板被損壞。此外,在各種因素的影響,產(chǎn)品的設計必須滿足以下要求:
(1)尾板舉升過程保持水平;
(2)尾板在完成舉升后可與車廂自動合攏;
(3)尾板舉升速度適中(80mm/sec左右),舉升下降平穩(wěn);
(4)尾板合攏角速度適中(10°/sec左右),且合攏展開平穩(wěn);
(5)最大起重量為0.5T;
(6)舉升機構的最小傳動角γmin≥40°;
(7)舉升、合攏所用動力部件采用伸縮油缸;
(8)油缸應安裝在車廂下面;
(9)油缸承受最大載荷適中;
(10)尾板要便于安裝。
第2章 車載輪椅升降機機構方案分析
2.1 方案一
采用齒輪齒條機構
圖2-1 齒輪齒條機構
優(yōu)點:升降距離可精確控制,運行平穩(wěn);
缺點:因此該機構不宜進行較大距離升降,否則會影響行車(整個機構要安裝于汽車車廂下面的底盤上)。
2.2方案二
采用曲柄滑塊機構
圖2-2 曲柄滑塊機構
優(yōu)點:結構簡單,運行平穩(wěn),無沖擊;
缺點:與導桿機構一樣,安裝于車廂底部后不利行車,因此也不可用。
2.3 方案三
采用導桿機構
圖2-3 導桿機構
優(yōu)點:構件少,結構簡單,因此成本較低,易于實現(xiàn);
缺點:由于整個機構要安裝于汽車車廂下面的底盤上,因此該垂直升降式導桿機構安裝后不利行車,不可用。
2.4方案四
采用平行四邊形機構
圖2-4 平行四邊形機構
優(yōu)點:結構簡單,運行平穩(wěn),可安裝于車廂底部,不影響車輛的美觀和行車;
缺點:構件較多,安裝時部分車輛可能需對尾部進行一定的改裝。
2.5 方案確定
考慮到車廂的具體結構和使用要求,機構的機架只能固定在汽車車廂下面的底盤上,此外,起升機構上升到上限位置時應與地面有一定距離以利于行車,尾板在舉升過程中還應保持平穩(wěn),以保證貨物的安全。
通過對以上各機構優(yōu)缺點的對比,現(xiàn)確定尾板平動采用平行四邊形機構,考慮到尾板的合攏動作,需對其進行適當?shù)母膭?,改動后結構簡圖如圖2-5所示。
圖2-5 尾板機構簡圖
該機構采用伸縮式液壓缸,其中,與上部連桿形成轉動副的液壓缸用于舉升,另一個液壓缸用于尾板的合攏。連桿與關門缸構成平行四邊形機構,保證尾板的平動;液壓缸的伸縮運動轉化為連桿的擺動運動后,尾板升降較為平穩(wěn);該機構在豎直方向結構緊湊,在舉升至上限位置時,機構最下端與地面仍有一段距離,不影響正常行車。因此,該機構滿足設計要求。
第3章 車載輪椅升降機機構機械結構設計
3.1 汽車尾部參數(shù)
表4.1 技術參數(shù)列表
車型
CQ1113T6F23G461
駕駛室最高點距車架上翼面距離(mm)
2056
汽車底盤長(mm)
8208
駕駛室后圍距前軸(mm)
508
軸距(mm)
4600
外氣管距前軸距離(mm)
752
車架有效長度(mm)
5578
車架上平面離地高度(滿載)(mm)
1007
車架外寬(mm)
1150
底盤整備質量(kg)
4080
推薦貨物重心(mm)
890
底盤軸荷前軸/后軸(kg)
1680/2400
車輛前懸/車架后懸(mm)
1548/1800
底盤最大承載質量(kg)
7320
汽車底盤總高(mm)
3060
廠定最大設計總質量(kg)
11400
3.2 尾板尺寸設計
尾板的起始及終止位置如圖3-3所示。由車體尺寸知,尾板舉升高度為420mm,取L1=315mm,L2=171mm,A、E兩點高度差為H3=103mm,尾板外觀厚度H0=100mm。
圖 連桿尺寸及安裝位置
由圖4-3可知,尾板在舉升過程中,傳動角γ先增大后減小,故其最小值于起始或終止位置處取得。根據(jù)設計要求需使γ≥40°,當尾板位于最高位置時,
H2≤(L1+L2)cotγmin=300(mm) ①
當尾板位于起始位置時,
tanγ=
=≥tan38°=0.62 ②
由①、②得475≤H2≤715,故取H2=600mm.
則桿AC長度lAC=600/cos45°=848(mm)。
當尾板位于起始位置時,傳動角
γ=arctan
=arctan=65°≥40°
當尾板位于終止位置時,由L1+L2=H2知傳動角γ=45°≥40°,滿足設計要求。
3.3 設計尺寸
取lAG=2lAC/3=566mm,則舉升缸1的本體長度(即活塞桿合攏時長度)最小值為
L1==
=543.0(mm)
舉升缸1的行程為
x1=
=
=137(mm)
關門缸2的本體長度為
L2===848(mm)
關門缸2的行程為
x2=
=
=141(mm)
根據(jù)液壓缸的本體長度、行程及市場常見規(guī)格取缸體直徑為800mm,活塞桿直徑為30mm。
3.4 機構運動分析
位移分析
由于尾板機構具有對稱性,故只取一側進行分析。而將舉升連桿平移至與合攏連桿同平面并不改變其位移、速度、加速度特性,故為簡便起見,將機構簡圖改畫如圖5-1所示。
圖5-1 尾板機構簡圖
以O為坐標原點,建立如圖所示坐標系,則A(0,340),B(0,240),E(0,190),C2(600,940),D2(600,840),點C、D、G的位移方程如下:
舉升過程中(73.57°≤θ≤135°),
C:
D:
G:
合攏過程中,只有D點位置繼續(xù)變化,其位移方程如下:
(0≤φ≤90°)
因為,故,保證了尾板在舉升過程中處于平動狀態(tài)。
速度分析
各位移方程求導得各點相應速度方程如下:
舉升過程中(73.57°≤θ≤135°),
C:
D:
G:
合攏過程中,
(0≤φ≤90°)
圖描述了點C1、D1在運動過程中沿y軸方向的速度變化情況。從圖中可以看出,舉升過程中,點C1、D1在豎直方向的速度始終保持相同,大小為80~100mm/s,并為緩慢的勻加速運動,實際應用較為理想。
加速度分析
對各速度方程求導得相應加速度方程如下:
舉升過程中(73.57°≤θ≤135°),
C:
D:
G:
合攏過程中,
(0≤φ≤90°)
通過以上對相關各點的位移、速度和加速度的分析,可以得出如下結論:
(1)尾板在舉升過程中始終保持平動。
(2)豎直方向加速度較小且近乎恒定,水平方向加速度初始時較小,當尾板接近上限位置時加速度較大,但因加速時間較短,對速度影響不大,因此,從整體來看,尾板運行平穩(wěn)。
(3)尾板合攏速度適中,即合攏較為平穩(wěn)。
因此,機構在運動方向滿足設計要求。
由圖6-1可知,整個起重尾板機構所受外力只有載荷F=2000N、重力W和三個鉸鏈A、B′、E′處的支座反力。對于液壓伸縮缸,只需根據(jù)活塞桿受力情況來確定其型號參數(shù),因此,只需對關門缸活塞桿和舉升缸活塞桿進行受力分析,而不用求解B′、E′兩個鉸鏈處的支座反力。
圖 動力分析機構簡圖
3.5 受力分析
尾板受力圖如圖所示:
尾板受力分析
受力方程式:(尾板重力=1930N)
舉升缸活塞桿EG受力圖如圖6-3所示:
圖 舉升缸活塞桿受力分析
受力方程式:(關門缸活塞桿重力=20N)
舉升連桿由桿AC、A′C′、FF′組成,桿FF′只起連接、支撐作用,為次要構件,無需做受力分析,而AC、A′C′兩桿因具有對稱性,受力情況相同,故只取桿AC進行受力分析,其等效受力圖如圖6-4所示:
圖 舉升連桿受力分析
受力方程式:(連桿重力=170N)
由兩個關門缸的對稱分布可知,其活塞桿受力情況相同,現(xiàn)只取活塞桿BD進行受力分析,其受力圖如圖6-5所示:
圖 關門缸活塞桿受力分析
受力方程式:(關門缸活塞桿重力=26N)
從以上分析可以看出,舉升缸活塞桿在舉升貨物至最高點時受力最大,為47476.2N;關門缸活塞桿也在貨物到達最高點時受力最大,為32350.3N;舉升連桿也在貨物到達最高點時受力最大,為53350.8N。因以上三桿橫截面積相同,均為
,
最大拉伸應力
,
盡管部分構件所受應力較大,但仍在較常用的鋼材許用應力范圍之內(nèi)。因此,各桿受力合理,滿足設計要求。
3.6 液壓原理圖
? 1.油箱 2.液面計 3.空氣濾清器 4.油濾 5.泵 6.電機
? 7.組合閥 8.換向閥 9.關門油缸 10.舉升油缸
第4章 液壓系統(tǒng)設計計算
基本參數(shù)是車載輪椅升降機的基本技術數(shù)據(jù),是根據(jù)尾板的用途及結構類型來確定的,它反映了車載尾板工作能力及特點,也基本上上確定了尾板的輪廓尺寸及本體總質量等。
4.1 舉升液壓缸的設計
由于主液壓缸采用單作用柱塞式套缸,缸徑較大,能提供很大載荷作用下的舉升力,同時能夠滿足靠重力回落和撤收的要求。并且工作過程為快進→工進→快退三個過程的工作循環(huán)。液壓缸的機械效率
由上節(jié)得到 舉升缸活塞桿在舉升貨物至最高點時受力最大,為47476.2N;關門缸活塞桿也在貨物到達最高點時受力最大,為32350.3N;
工進時候的負載是最大的,
1. 工作壓力P=5.1Mpa
2. 液壓缸內(nèi)徑的計算
D=×10-3
=0.101.5m
=101.5mm
查《液壓傳動與控制手冊》經(jīng)過標準化處理D=100mm。
表4.1 液壓缸內(nèi)徑系列 mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
3. 液壓缸缸體厚度計算
缸體是液壓缸中最重要的零件,當液壓缸的工作壓力較高和缸體內(nèi)經(jīng)較大時,必須進行強度校核。缸體的常用材料為20、25、35、45號鋼的無縫鋼管。在這幾種材料中45號鋼的性能最為優(yōu)良,所以這里選用45號鋼作為缸體的材料。
式中,——實驗壓力,MPa。當液壓缸額定壓力Pn5.1MPa時,Py=1.5Pn,當Pn16MPa時,Py=1.25Pn。
[]——缸筒材料許用應力,N/mm。[]=,為材料的抗拉強度。
注:1.額定壓力Pn
額定壓力又稱公稱壓力即系統(tǒng)壓力,Pn=5.1MPa
2.最高允許壓力Pmax
Pmax1.5Pn=1.255.1=6.375MPa
液壓缸缸筒材料采用45鋼,則抗拉強度:σb=600MPa
安全系數(shù)n按《液壓傳動與控制手冊》P243表2—10,取n=5。
則許用應力[]==120MPa
=
=2.66mm
,滿足。所以液壓缸厚度取5mm。
則液壓缸缸體外徑為110mm。
4.液壓缸長度的確定
液壓缸長度L根據(jù)工作部件的行程長度確定。
5. 活塞桿直徑的設計
查《液壓傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當活塞桿受拉時,一般選取d/D=0.3-0.5,當活塞桿受壓時,一般選取d/D=0.5-0.7。本設計我選擇d/D=0.7,即d=0.7D=0.7×100=70mm。
表4.2 活塞桿直徑系列
4
5
6
8
10
12
14
16
18
20
22
25
28
32
36
40
45
50
56
63
70
80
90
100
110
125
140
160
180
200
220
250
280
320
360
400
故取d=70mm。
2.活塞桿強度計算:
<56mm (4-4)
式中 ————許用應力;(Q235鋼的抗拉強度為375-500MPa,取400MPa,為位安全系數(shù)取5,即活塞桿的強度適中)
3.活塞桿的結構設計
活塞桿的外端頭部與負載的拖動電機機構相連接,為了避免活塞桿在工作生產(chǎn)中偏心負載力,適應液壓缸的安裝要求,提高其作用效率,應根據(jù)負載的具體情況,選擇適當?shù)幕钊麠U端部結構。
4.活塞桿的密封與防塵
活塞桿的密封形式有Y形密封圈、U形夾織物密封圈、O形密封圈、V形密封圈等[6]。采用薄鋼片組合防塵圈時,防塵圈與活塞桿的配合可按H9/f9選取。薄鋼片厚度為0.5mm。為方便設計和維護,本方案選擇O型密封圈。
液壓缸工作行程長度可以根據(jù)執(zhí)行機構實際工作的最大行程確定,并參照表4-4選取標準值。液壓缸活塞行程參數(shù)優(yōu)先次序按表4-4中的a、b、c選用。
表4-4(a)液壓缸行程系列(GB 2349-80)[6]
25
50
80
100
125
160
200
250
320
400
500
630
800
1000
1250
1600
2000
2500
3200
4000
表4-4(b) 液壓缸行程系列(GB 2349-80)[6]
40
63
90
110
140
180
220
280
360
450
550
700
900
1100
1400
1800
2200
2800
3600
表4-4(c) 液壓缸形成系列(GB 2349-80)[6]
240
260
300
340
380
420
480
530
600
650
750
850
950
1050
1200
1300
1500
1700
1900
2100
2400
2600
3000
3400
3800
4.2 關門液壓缸的設計
工作壓力P=5.1Mpa
由上節(jié)得到關門缸活塞桿也在貨物到達最高點時受力最大,為32350.3N;
液壓缸內(nèi)徑的計算 D=×10-3
=0.586m
=56.6mm
查《液壓傳動與控制手冊》經(jīng)過標準化處理D=63mm。
表4.1 液壓缸內(nèi)徑系列 mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
4. 液壓缸缸體厚度計算
缸體是液壓缸中最重要的零件,當液壓缸的工作壓力較高和缸體內(nèi)經(jīng)較大時,必須進行強度校核。缸體的常用材料為20、25、35、45號鋼的無縫鋼管。在這幾種材料中45號鋼的性能最為優(yōu)良,所以這里選用45號鋼作為缸體的材料。
式中,——實驗壓力,MPa。當液壓缸額定壓力Pn5.1MPa時,Py=1.5Pn,當Pn16MPa時,Py=1.25Pn。
[]——缸筒材料許用應力,N/mm。[]=,為材料的抗拉強度。
注:1.額定壓力Pn
額定壓力又稱公稱壓力即系統(tǒng)壓力,Pn=15.1MPa
2.最高允許壓力Pmax
Pmax1.5Pn=1.2515.3=19.125MPa
液壓缸缸筒材料采用45鋼,則抗拉強度:σb=600MPa
安全系數(shù)n按《液壓傳動與控制手冊》P243表2—10,取n=5。
則許用應力[]==120MPa
=
=2.66mm
,滿足。所以液壓缸厚度取5mm。
則液壓缸缸體外徑為73mm。
4.液壓缸長度的確定
液壓缸長度L根據(jù)工作部件的行程長度確定。從制造上考慮,一般液壓缸的長度L不會大于液壓缸直徑的20到30倍。
4.3 活塞的設計
由于活塞在液壓力的作用下沿缸筒往復滑動,因此,它與缸筒的配合應適當,既不能過緊,也不能間隙過大。配合過緊,不僅使最低啟動壓力增大,降低機械效率,而且容易損壞缸筒和活塞的配合表面;間隙過大,會引起液壓缸內(nèi)部泄露,降低容積效率,使液壓缸達不到要求的設計性能。
活塞與缸體的密封形式分為:間隙密封(用于低壓系統(tǒng)中的液壓缸活塞的密封)、活塞環(huán)密封(適用于溫度變化范圍大、要求摩擦力小、壽命長的活塞密封)、密封圈密封三大類。其中密封圈密封又包括O形密封圈(密封性能好,摩擦因數(shù)小,安裝空間?。?、Y形密封圈(用在20Mpa壓力下、往復運動速度較高的液壓缸密封)、形密封圈(耐高壓,耐磨性好,低溫性能好,逐漸取代Y形密封圈)、V形密封圈(可用于50Mpa壓力下,耐久性好,但摩擦阻力大)。綜合以上因素,考慮選用O型密封圈。
4.4 導向套的設計與計算
1.最小導向長度H的確定
當活塞桿全部伸出時,從活塞支承面中點到到導向套滑動面中點的距離稱為最小導向長度[1]。如果導向長度過短,將使液壓缸因間隙引起的初始撓度增大,影響液壓缸工作性能和穩(wěn)定性。因此,在設計時必須保證液壓缸有一定的最小導向長度。根據(jù)經(jīng)驗,當液壓缸最大行程為L,缸筒直徑為D時,最小導向長度為:
(4-5)
一般導向套滑動面的長度A,在缸徑小于80mm時取A=(0.6~1.0)D,當缸徑大于80mm時取A=(0.6~1.0)d.。活塞寬度B取B=(0.6~1.0)D。若導向長度H不夠時,可在活塞桿上增加一個導向套K(見圖4-1)來增加H值。隔套K的寬度。
圖4-1 液壓缸最小導向長度[1]
因此:最小導向長度,取H=9cm;
導向套滑動面長度A=
活塞寬度B=
隔套K的寬度
2.導向套的結構
導向套有普通導向套、易拆導向套、球面導向套和靜壓導向套等,可按工作情況適當選擇。
1)普通導向套 這種導向套安裝在支承座或端蓋上,油槽內(nèi)的壓力油起潤滑作用和張開密封圈唇邊而起密封作用[6]。
2)易拆導向套 這種導向套用螺釘或螺紋固定在端蓋上。當導向套和密封圈磨損而需要更換時,不必拆卸端蓋和活塞桿就能進行,維修十分方便。它適用于工作條件惡劣,需經(jīng)常更換導向套和密封圈而又不允許拆卸液壓缸的情況下。
3)球面導向套 這種導向套的外球面與端蓋接觸,當活塞桿受一偏心負載而引起方向傾斜時,導向套可以自動調位,使導向套軸線始終與運動方向一致,不產(chǎn)生“憋勁“現(xiàn)象。這樣,不僅保證了活塞桿的順利工作,而且導向套的內(nèi)孔磨損也比較均勻。
4)靜壓導向套 活塞桿往復運動頻率高、速度快、振動大的液壓缸,可以采用靜壓導向套。由于活塞桿與導向套之間有壓力油膜,它們之間不存在直接接觸,而是在壓力油中浮動,所以摩擦因數(shù)小、無磨損、剛性好、能吸收振動、同軸度高,但制造復雜,要有專用的靜壓系統(tǒng)。
4.5 端蓋和缸底的設計與計算
在單活塞液壓缸中,有活塞桿通過的端蓋叫端蓋,無活塞桿通過的缸蓋叫缸頭或缸底。端蓋、缸底與缸筒構成密封的壓力容腔,它不僅要有足夠的強度以承受液壓力,而且必須具有一定的連接強度。端蓋上有活塞桿導向孔(或裝導向套的孔)及防塵圈、密封圈槽,還有連接螺釘孔,受力情況比較復雜,設計的不好容易損壞。
1.端蓋的設計計算
端蓋厚h為:
式中 D1——螺釘孔分布直徑,cm;
P——液壓力,;
——密封環(huán)形端面平均直徑,cm;
——材料的許用應力,。
2.缸底的設計
缸底分平底缸,橢圓缸底,半球形缸底。
3.端蓋的結構
端蓋在結構上除要解決與缸體的連接與密封外,還必須考慮活塞桿的導向,密封和防塵等問題[6]。缸體端部的連接形式有以下幾種:
A.焊接 特點是結構簡單,尺寸小,質量小,使用廣泛。缸體焊接后可能變形,且內(nèi)缸不易加工。主要用于柱塞式液壓缸。
B.螺紋連接(外螺紋、內(nèi)螺紋) 特點是徑向尺寸小,質量較小,使用廣泛。缸體外徑需加工,且應與內(nèi)徑同軸;裝卸徐專用工具;安裝時應防止密封圈扭曲。
C.法蘭連接 特點是結構較簡單,易加工、易裝卸,使用廣泛。徑向尺寸較大,質量比螺紋連接的大。非焊接式法蘭的端部應燉粗。
D.拉桿連接 特點是結構通用性好。缸體加工容易,裝卸方便,使用較廣。外形尺寸大,質量大。用于載荷較大的雙作用缸。
E.半球連接,它又分為外半環(huán)和內(nèi)半環(huán)兩種。外半環(huán)連接的特點是質量比拉桿連接小,缸體外徑需加工。半環(huán)槽消弱了缸體,為此缸體壁厚應加厚。內(nèi)半環(huán)連接的特點是結構緊湊,質量小。安裝時端部進入缸體較深,密封圈有可能被進油口邊緣擦傷。
F.鋼絲連接 特點是結構簡單,尺寸小,質量小。
4.6 缸體長度的確定
液壓缸缸體內(nèi)部長度應等于活塞的行程與活塞的寬度之和。缸體外形長度還需要考慮到兩端端蓋的厚度[1]。一般液壓缸缸體長度不應大于缸體內(nèi)經(jīng)的20~30倍。取系數(shù)為5,則液壓缸缸體長度:L=5*10cm=50cm。
4.7 緩沖裝置的設計
液壓缸的活塞桿(或柱塞桿)具有一定的質量,在液壓力的驅動下運動時具有很大的動量。在它們的行程終端,當桿頭進入液壓缸的端蓋和缸底部分時,會引起機械碰撞,產(chǎn)生很大的沖擊和噪聲。采用緩沖裝置,就是為了避免這種機械撞擊,但沖擊壓力仍然存在,大約是額定工作壓力的兩倍,這就必然會嚴重影響液壓缸和整個液壓系統(tǒng)的強度及正常工作。緩沖裝置可以防止和減少液壓缸活塞及活塞桿等運動部件在運動時對缸底或端蓋的沖擊,在它們的行程終端能實現(xiàn)速度的遞減,直至為零。
當液壓缸中活塞活塞運動速度在6m/min以下時,一般不設緩沖裝置,而運動速度在12m/min以上時,不需設置緩沖裝置。在該組合機床液壓系統(tǒng)中,動力滑臺的最大速度為4m/min,因此沒有必要設計緩沖裝置。
4.8 排氣裝置
如果排氣裝置設置不當或者沒有設置排氣裝置,壓力油進入液壓缸后,缸內(nèi)仍會存在空氣[6]。由于空氣具有壓縮性和滯后擴張性,會造成液壓缸和整個液壓系統(tǒng)在工作中的顫振和爬行,影響液壓缸的正常工作。比如液壓導軌磨床在加工過程中,這不僅會影響被加工表面的光潔程度和精度,而且會損壞砂輪和磨頭等機構。為了避免這種現(xiàn)象的發(fā)生,除了防止空氣進入液壓系統(tǒng)外,還必須在液壓缸上設置排氣裝置。配氣裝置的位置要合理,由于空氣比壓力油輕,總是向上浮動,因此水平安裝的液壓缸,其位置應設在缸體兩腔端部的上方;垂直安裝的液壓缸,應設在端蓋的上方。
一般有整體排氣塞和組合排氣塞兩種。整體排氣塞如圖4-2(a)所示。
表4-5 排氣閥(塞)尺寸[6]
d
閥座
閥桿
孔
c
D
M16
6
11
6
19.2
9
3
2
31
17
10
8.5
3
48
4~6
23
M20x2
8
14
7
25.4
11
4
3
39
22
13
11
4
59
4~8
28
圖4-2 (a) 整體排氣孔 圖4-2(b) 組合排氣孔
圖4-2(c) 整體排氣閥零件結構尺寸
由于螺紋與缸筒或端面連接,靠頭部錐面起密封作用。排氣時,擰松螺紋,缸內(nèi)空氣從錐面空隙中擠出來并經(jīng)過斜孔排除缸外。這種排氣裝置簡單、方便,但螺紋與錐面密封處同軸度要求較高,否則擰緊排氣塞后不能密封,造成外泄漏。組合排氣塞如圖4-2(b)所示,一般由絡螺塞和錐閥組成。螺塞擰松后,錐閥在壓力的推動下脫離密封面排出空氣。排氣裝置的零件圖及尺寸圖見4-2(c)以及表4-2(d)。
圖4-2(d) 組合排氣閥零件結構尺寸
4.9 密封件的選用
1.對密封件的要求
液壓缸工作中要求達到零泄漏、摩擦小和耐磨損的要求。在設計時,正確地選擇密封件、導向套(支承環(huán))和防塵圈的結構形式和材料是很重要的。從現(xiàn)在密封技術來分析,液壓缸的活塞和活塞桿及密封、導向套和防塵等應作為一個綜合的密封系統(tǒng)來考慮,具有可靠的密封系統(tǒng),才能式液壓缸具有良好的工作狀態(tài)和理想的使用壽命。
在液壓元件中,對液壓缸的密封要求是比較高的,特別是一些特殊材料液壓缸,如擺動液壓缸等。液壓缸中不僅有靜密封,更多的部位是動密封,而且工作壓力高,這就要求密封件的密封性能要好,耐磨損,對溫度適應范圍大,要求彈性好,永久變形小,有適當?shù)臋C械強度,摩擦阻力小,容易制造和裝卸,能隨壓力的升高而提高密封能力和利于自動補償磨損。
密封件一般以斷面形狀分類。有O形、U形、V形、J形、L形和Y形等。除O形外,其他都屬于唇形密封件。
2.O形密封圈的選用
液壓缸的靜密封部位主要是活塞內(nèi)孔與活塞桿、支承座外圓與缸筒內(nèi)孔、缸蓋與缸體端面等處[6]。這些部位雖然是靜密封,但因工作由液壓力大,稍有意外,就會引起過量的內(nèi)漏和外漏。
靜密封部位使用的密封件基本上都是O形密封圈。O形密封圈雖小,確實一種精密的橡膠制品,在復雜使用條件下,具有較好的尺寸穩(wěn)定性和保持自身的性能。在設計選用時,根據(jù)使用條件選擇適宜的材料和尺寸,并采取合理的安裝維護措施,才能達到較滿意的密封效果。
安裝O形圈的溝槽有多種形式,如矩形、三角形、V形、燕尾形、半圓形、斜底形等,可根據(jù)不同使用條件選擇,不能一概而論。使用最多的溝槽是矩形,其加工簡便,但容易引起密封圈咬邊、扭轉等現(xiàn)象。
3.動密封部位密封圈的選用
液壓缸動密封部位主要有活塞與缸筒內(nèi)孔的密封、活塞桿與支承座(導向套)的密封等。
形密封圈是我國液壓缸行業(yè)使用極其廣泛的往復運動密封圈。它是一種軸、孔互不通用的密封圈。一般,使用壓力低于16MPa時,可不用擋圈而單獨使用。當超過16MPa并用于活塞動密封裝置時,應使用擋圈,以防止間隙“擠出”。
4.10 防塵圈
防塵圈設置與活塞桿或柱塞密封外側,用于防止外界塵埃、沙粒等異物侵入液壓缸,從而可以防止液壓油被污染導致元件磨損。
1.防塵圈
A型防塵圈 是一種單唇無骨架橡膠密封圈,適于在A型密封結構形式內(nèi)安
裝,起防塵作用。
B型防塵密封圈 是一種單唇帶骨架橡膠密封圈,適于在B型密封結構形式
內(nèi)安裝,起防塵作用。
C型防塵圈 是一種雙唇密封橡膠圈,適于在C型結構形式內(nèi)安裝,起防塵
和輔助密封的作用。
2.防塵罩
防塵罩采用橡膠或尼龍、帆布等材料制作。在高溫工作時,可用氯丁橡膠,可在130℃以下工作。如果溫度再高時,可用耐火石棉材料。當選用防塵伸縮套時,要注意在高頻率動作時的耐久性,同時注意在高速運動時伸縮套透氣孔是否能及時導入足夠的空氣。但是,安裝伸縮套給液壓缸的裝配調整會帶來一些困難。
4.11 液壓缸的安裝連接結構
液壓缸的安裝連接結構包括液壓缸的安裝結構、液壓缸近處有口的連接等。1.液壓缸的安裝形式
液壓缸的安裝形式很多,但大致可以分為以下兩類。
1)軸線固定類 這類安裝形式的液壓缸在工作時,軸線位置固定不變。機床上的液壓缸絕大多數(shù)是采用這種安裝形式。
A 通用拉桿式。在兩端缸蓋上鉆出通孔,用雙頭螺釘將缸和安裝座連接拉緊。一般短行程、壓力低的液壓缸。
B 法蘭式。用液壓缸上的法蘭將其固定在機器上。
C 支座式。將液壓缸頭尾兩端的凸緣與支座固定在一起。支座可置于液壓缸左右的徑向、切向,也可置于軸向底部的前后端。
2)周線擺動類 液壓缸在往復運動時,由于機構的相互作用使其軸線產(chǎn)生擺動,達到調整位置和方向的要求。安裝這類液壓缸,安裝形式也只能采用使其能擺動的鉸接方式。工程機械、農(nóng)用機械、翻斗汽車和船舶甲板機械等所用的液壓缸多用這類安裝形式。
A 耳軸式。將固定在液壓缸上的鉸軸安裝在機械的軸座內(nèi),使液壓缸軸線能在某個平面內(nèi)自由擺動。
B 耳環(huán)式。將液壓缸的耳環(huán)與機械上的耳環(huán)用銷軸連接在一起,使液壓缸能在某個平面內(nèi)自由擺動。耳環(huán)在液壓缸的尾部,可以是單耳環(huán),也可以是雙耳環(huán),還可以做成帶關節(jié)軸承的單耳環(huán)或雙耳環(huán)。
C 球頭式。將液壓缸尾部的球頭與機械上的球座連接在一起,使液壓缸能在一定的空間錐角范圍內(nèi)任意擺動。
2.液壓缸油口設計
油口孔是壓力油進入液壓缸的直接通道,雖然只是一個孔,但不能輕視其作用[6]。如果孔小了,不僅造成進油時流量供不應求,影響液壓缸的活塞運動速度,而且會造成回油時受阻,形成背壓,影響活塞的退回速度,減少液壓缸的負載能力。對液壓缸往復速度要求較嚴的設計,一定要計算孔徑的大小。
液壓缸的進出油口,可以布置在缸筒和前后端蓋上。對于活塞桿固定的液壓缸,進出油口可以設在活塞桿端部。如果液壓缸無專用排氣裝置,進出油口應設在液壓缸的最高處,以便空氣能首先從液壓缸排出。液壓缸進出油口的鏈接形式有螺紋、方形法蘭和矩形法蘭等。
第5章 液壓泵的參數(shù)計算
由表4-6可知工進階段液壓缸壓力最大,若取進油路總壓力損失,壓力繼電器可靠動作需要壓力差為,則液壓泵 最高工作壓力可按式算出:
因此泵的額定壓力可取1.2546.3Pa=58Pa。
由表4-6可知,工進時所需要流量最小是0.24L/min,設溢流閥最小溢流量為2.5L/min,則小流量泵的流量應為,快進快退時液壓缸所需的最大流量是20.1L/min,則泵的總流量為;
即大流量泵的流量。
根據(jù)上面計算的壓力和流量,查產(chǎn)品樣本,選用YB-A26B型的雙聯(lián)葉片泵,該泵額定壓力為7MPa,額定轉速1000r/min。
第6章 電動機的選擇
系統(tǒng)為雙泵供油系統(tǒng),差動快進、快退時兩個泵同時向系統(tǒng)供油;工進時,小泵向系統(tǒng)供油,大泵卸載[1]。
小泵流量:
大泵流量:
下面分別計算三個階段所需要的電動機功率P。
1.差動快進
差動快進時,大泵3的出口壓力油經(jīng)單向閥6后與小泵4匯合,然后經(jīng)三位五通閥15進入液壓缸大腔,大腔的壓力,查樣本可知,小泵的出口壓力損失,大泵出口到小泵出口的壓力損失。于是計算可得小泵的出口壓力(總效率=0.5),大泵出口壓力(總效率=0.5)。
電動機功率:
2.工進
考慮到調速閥所需最小壓力差。壓力繼電器可靠動作需要壓力差。
因此工進時小泵的出口壓力為:
。而大泵的卸載壓力取。(小泵的總效率=0.565,大泵的總效率=0.3)。
電動機功率:
3.快退
類似差動快進分析知:小泵的出口壓力(總效率=0.5);大泵出口壓力(總效率=0.51)。
電動機功率為:
綜合比較,快退時所需功率最大。據(jù)此查樣本選用Y132M-1異步電動機,電動機功率為3KW,額定轉速750r/min。
第7章 液壓元件的選擇
7.1 液壓閥及過濾器的選擇
根據(jù)液壓閥在系統(tǒng)中的最高工作壓力與通過該閥的最大流量,可選出這些元件的型號及規(guī)格[1]。本例所有閥的額定壓力都為,額定流量根據(jù)各閥通過的流量,確定為10L/min,25L/min和63L/min三種規(guī)格,所有元件的規(guī)格型號列于表5-1中,過濾器按液壓泵額定流量的兩倍選取吸油用線隙式過濾器。
表7-1 液壓元件明細表
序號
元件名稱
最大通過流量
型號
1
泵
22.5
YB-A26B
2
單向閥
12
I-25B
3
三位五通電磁閥
32
35-63BY
4
二位二通電磁閥
32
22-63BH
5
調速閥
0.32
Q-10B
6
壓力繼電器
D-63B
7
單向閥
16
I-25B
8
液控順序閥
0.16
XY-25B
9
背壓閥
0.16
B-10B
10
液控順序閥(卸載用)
16
XY-25B
11
單向閥
12
I-25B
12
溢流閥
4
Y-10B
13
過濾器
45
XU-B32*100
14
壓力表開關
K-6B
15
減壓閥
20
J-63B
16
單向閥
20
I-63B
18
單向順序閥
XI-63B
7.2 油管的選擇
根據(jù)選定的液壓閥的連接油口尺寸確定管道尺寸。液壓缸的進、出油管按輸入、排出的最大流量來計算。由于本系統(tǒng)液壓缸差動連接快進快退時,油管內(nèi)通油量最大,其實際流量為泵的額定流量的兩倍達45L/min,則液壓缸進、出油管直徑d按產(chǎn)品樣本,選用內(nèi)徑為10mm,外徑為18mm的冷拔鋼管。
7.3 油箱容積的確定
中壓系統(tǒng)的油箱容積一般取液壓泵額定流量的5~7倍,本設計取7倍,故油箱容積為:
第8章 驗算液壓系統(tǒng)性能
8.1 壓力損失的驗算及泵壓力的調整
1.工進時的壓力損失的驗算及泵壓力的調整
工進時管路中的流量僅為0.24L/min,因此流速很小,所以沿程壓力損失和局部損失都非常小,可以忽略不計[1]。這時進油路上僅考慮調速閥的壓力損失,回油路上只有背壓閥的壓力損失,小流量泵的調整壓力應等于工進時液壓缸的工作壓力加上進油路壓差,并考慮壓力繼電器動作需要,則:
即小流量泵的溢流閥12應按此壓力調整。
2.快退時的壓力損失驗算及大流量泵卸載壓力的調整
因快退時,液壓缸無桿腔的回游量是進油量的兩倍,其壓力損失比快進時要大,因此必須計算快退時的進油路與回油路的壓力損失,以便于確定大流量泵的卸載壓力。
已知:快退時進油管和回油管長度均為l=1.8m,油管直徑d=25m,通過的流量為進油路=22.5L/min=,
回油路=45L/mi