《《一元二次方程根的判別式》教學(xué)設(shè)計方案》由會員分享,可在線閱讀,更多相關(guān)《《一元二次方程根的判別式》教學(xué)設(shè)計方案(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、《一元二次方程根的判別式》教學(xué)設(shè)計方案
課題名稱
《一元二次方程根的判別式》
科 目
初中數(shù)學(xué)
年級
教學(xué)時間
一節(jié)課(45分鐘)
學(xué)習者分析
學(xué)生已經(jīng)學(xué)過一元二次方程的四種解法,并對的作用已經(jīng)有所了解,在此基礎(chǔ)上來進一步研究作用,它是前面知識的深化與總結(jié)。從思想方法上來說,學(xué)生對分類討論、歸納總結(jié)的數(shù)學(xué)思想已經(jīng)有所接觸。所以可以通過讓學(xué)生動手、動腦來培養(yǎng)學(xué)生探索精神和觀察、分析、歸納的能力,以及邏輯思維能力、推理論證能力。
教學(xué)目標
一、知識與技能
1. 感悟一元二次方程的根的判別式的產(chǎn)生的過程;
2. 會運用根的判別式求一元二次方
2、程中字母系數(shù)的取值范圍;
二、過程與方法
1. 培養(yǎng)學(xué)生的探索、創(chuàng)新精神;
2. 培養(yǎng)學(xué)生的邏輯思維能力以及推理論證能力。
三、情感態(tài)度與價值觀
1. 學(xué)生滲透分類的數(shù)學(xué)思想和數(shù)學(xué)的簡潔美;
2. 培養(yǎng)學(xué)生的協(xié)作精神
教學(xué)重點、難點
1. 根的判別式定理及逆定理的正確理解和運用
2. 根的判別式定理及逆定理的運用。
教學(xué)資源
教師自制的多媒體課件;上課環(huán)境為多媒體大屏幕環(huán)境。
《一元二次方程根的判別式》的教學(xué)活動過程描述
教學(xué)活動1
(一)設(shè)置懸念,引發(fā)興趣:
【教師】:同學(xué)們,我們已經(jīng)學(xué)會了怎么解一元二次方程,對嗎?那么,現(xiàn)在章老師這
3、兒還有一手絕活,就是:我隨便拿到一個一元二次方程的題目,我不用具體地去解它,就能很快知道它的根的大致情況,不信呀!同學(xué)們可以隨便地出兩個題考考我。
【學(xué)生】會爭先恐后地編題考老師。
(二)設(shè)置練習,創(chuàng)設(shè)情境。
【教師】你們一定很想知道我的絕活是怎么回事吧?那么好,現(xiàn)在就請同學(xué)們用公式法解,以下三個一元二次方程;你們會很快發(fā)現(xiàn)我的奧秘。
用公式法解一元二次方程(用投影儀打出)
(注:找三名學(xué)生板演,其余學(xué)生在位上做)
【學(xué)生】都在積極解答,尋找其中的奧秘。
教學(xué)活動2
(一)啟發(fā)引導(dǎo),發(fā)現(xiàn)結(jié)論:
【教師】請同學(xué)們觀察這三個方程的解題過程,可以發(fā)現(xiàn):在
4、把系數(shù)代入求根公式之前,每題都是先確定了a、b、c的值,然后求出它的值——,為什么要這樣做呢?
【學(xué)生】會初步說出 的作用是:它能決定方程是否可解。
【教師】(1)由此可見:在解
起著重要的作用,顯然我們可以根據(jù)的值的符號來判斷 的根的情況,因此,我們把 叫做一元二次方程的根的判別式,通常用符號“△(讀作delta,它是希臘字母)”來表示,即△=。我們說在今后的數(shù)學(xué)學(xué)習中還會遇到:用一個簡單的符號來表示一個數(shù)學(xué)式子的情況,同學(xué)們要逐漸適應(yīng)這一點,它體現(xiàn)了數(shù)學(xué)的簡潔美。
(3)通過解這三個方程,同學(xué)們可以發(fā)現(xiàn)一元二次方程根的情況有哪幾種,誰能總結(jié)出來?
【學(xué)生】由于前面作了鋪
5、墊,所以學(xué)生很快可以答出結(jié)論。
(二)引導(dǎo)學(xué)生,理論驗證:
【教師】一元二次方程根的情況果真有三種嗎? 請同學(xué)們認真閱讀課本P39的內(nèi)容,書上從理論方面給我們做了很好的解釋。
【學(xué)生】帶著老師提出的問題,會很認真地去看書,尋找答案。
(三)揭示定理:
【教師】(1)由此我們就得出了關(guān)于
若△>0 則方程有兩個不相等的實數(shù)根
若△ =0 則方程有兩個相等的實數(shù)根
若△<0則方程沒有實數(shù)根
(2)我們說:這個定理的逆命題也成立,即有如下的逆定理:
若方程有兩個不相等的實數(shù)根,則△>0
若方程有兩個相等的
6、實數(shù)根, 則△=0
若方程沒有實數(shù)根, 則△<0
(3)定理與逆定理的用途不同
定理的用途是:在不解方程的情況下,根據(jù)△值的符號,用定理來判斷方程根的情況。
逆定理的用途是:在已知方程根的情況下,用逆定理來確定△值的符號,進而可求出系數(shù)中某些字母的取值范圍。
(4)注意運用定理和逆定理時,必須把所給的方程化成一般形式后方可使用。
教學(xué)活動3
(一)應(yīng)用定理,解決問題:
【教師】下面我們就來學(xué)習兩個定理的應(yīng)用。
例1:不解方程判別下列方程根的情況(用投影儀打出)
分析;要判別方
7、程根的情況,根據(jù)定理可知;就是要確定△值的符號,
(4)補充了一個含有字母系數(shù)的方程,補充此題的目的是:使學(xué)生進一步地掌握此類題中△值的符號的判斷方法, 也為今后解綜合性問題打好基礎(chǔ)。在練習中作了相應(yīng)地補充。
分析:我先提出兩個問題:
(1)是誰決定了方程有無實數(shù)根?
(2)現(xiàn)在要證方程無實數(shù)根,只要證明什么就行了?
例2是補充的一個用定理證明的題目,它含有字母系數(shù),它的證明實際與例1的第(4)的解法類似,但學(xué)生易于出錯,往往錯用逆定理來證。
注意;例1,例2之后我設(shè)計了一個小結(jié):(1)關(guān)于運用根的判別式定理
8、來判斷:含有字母系數(shù)的一元二次方程根的情況的一般步驟以及關(guān)于△變形的一些經(jīng)驗,從而使學(xué)生真正搞清搞透。
小結(jié)(1)關(guān)于運用根的判別式定理來判斷:含有字母系數(shù)的一元二次方程根的情況的一般步驟是:
①把方程化為一般形式,確定a、b、c的值,計算△;
②用配方法等將△變形,使之符號明朗化后,判斷△的符號。
③根據(jù)根的判別式定理,寫出結(jié)論。
(2)注意關(guān)于△的變形;一般情況下,△由配方或因式分解后能變形成
等形式;那么△的符號就明朗了,即可判斷其符號。
學(xué)生練習;
不解方程,判別下列方程根的情況
注意:做以上練習時,學(xué)生板演,其余學(xué)生在位上做;板演后如果發(fā)現(xiàn)有錯或有其他解法,下面同學(xué)可主動上去糾正或?qū)懗鲎约旱牟煌夥?,然后教師進行講評。從而調(diào)動學(xué)生的參與意識。
分析:要解決這個問題,應(yīng)先假設(shè)方程有實根,然后根據(jù)根的判別式的逆定理,得出△≥0,再由△≥0解這個不等式,從而求出a的取值范圍,進而得出a的正整數(shù)解。
注意:本思考題是我補充的一個用逆定理來解決的問題,以鞏固逆定理的運用方法,本題讓學(xué)生自己分析,教師只幫助學(xué)生理清思路,最后讓學(xué)生自己完成。