插銷連接件沖壓模具設計 -級進模含CAD圖
插銷連接件沖壓模具設計 -級進模含CAD圖,插銷連接件沖壓模具設計,-級進模含CAD圖,插銷,連接,沖壓,模具設計,級進模含,cad
門窗插銷連接件模具設計Door latch connector mold design摘 要沖壓模具在實際工業(yè)生產(chǎn)中應用廣泛。沖壓模具的自動送料技術也投入到實際的生產(chǎn)中,沖壓模具可以大大的提高勞動生產(chǎn)效率,減輕工人負擔,具有重要的技術進步意義和經(jīng)濟價值。在這次設計中,首先運用 PRO/E 軟件的三維造型功能,對零件進行三維造型。對零件進行工藝性分析,大大簡化計算并得到精確結果,在此基礎上應用 AutoCAD繪制零件的二維圖紙,以加深對沖裁件、拉深件和成形件結構的工藝性的理解。設定零件的工藝方案,比較工藝方案并確定工藝方案。計算毛坯的尺寸,計算沖裁次數(shù),設定各步半成品的尺寸并繪出工序簡圖。計算各個工序的工作壓力,設計并繪出模具簡圖,選取各個合適的零件。了解落料模、拉深模、整形模、切邊模和沖孔模的特點和需要注意的問題,在模具簡圖的基礎上進行模具結構工藝性分析,進行模具結構設計并選擇沖壓設備。關鍵詞:級進模; 模具設計; 工藝; 結構設計ABSTRACTPunching die has been widely used in industry. More Self-acting feed technology of punching die is also used in production, punching die could increase the efficiencies of production and could alleviate the work burden,so it has significant meaning in technologic progress and economic value. In this design, first we use the 3D software function of PRO/E to create 3D model of the part. During the procedure, the work piece’s craftwork character is analyzed, and the work piece’s 2D drawings are made by AutoCAD, so that the work piece can be better comprehended. Learn the structural craftwork character of the work piece, so does the drawing and forming craftwork character. Make sure the work piece’s craft project, compare them and make the final decision. Calculate the size of the roughcast and select its shape. Calculate the times of the drawings, make sure the size of the semi-manufactured work piece of every steps, and draw the working procedure’s sketch. Calculate the every working pressure, design and draw die’s sketch, select every appropriate parts. Comprehend every needed dies’ character and the issues that is needed to be played more attention. On the base of the dies’ sketch ,the dies’ structure is analyzed, and then go on designing their structures and selecting punch equipments. Keywords: progressive die; Craft project ; manufacture ; structure design目 錄第一章 概述 .(1)第二章 零件的工藝性分析 .(4)第一節(jié) 沖裁工藝性分析 (4)第二節(jié) 彎曲的工藝性 (5)第三章 零件的加工工藝方案 .(6)第一節(jié) 工藝方案的擬定 (6)第二節(jié) 確定工藝方案 (6)第四章 模具工藝計算 .(8)第一節(jié) 毛坯尺寸的計算 (8)第二節(jié) 確定排樣方案 (10)第三節(jié) 排樣的設計計算 (10)第四節(jié) 模具壓力中心的計算 (12)第五節(jié) 沖裁力、彎曲力和拉深力的計算 (13)第六節(jié) 凸凹模刃口尺寸的計算 (14)第七節(jié) 彈性元件的選用與計算 (17)第五章 確定模具結構形式 .(19)第一節(jié) 初定模具結構 (19)第六章 模具中主要零件的設計 .(21)第一節(jié) 凸模的結構設計 (21)第二節(jié) 凹模設計 (23)第三節(jié) 壓力機的選擇 (25)第四節(jié) 定位零件的設計 (28)第五節(jié) 導向裝置的設計 (29)第六節(jié) 卸料裝置的設計 (29)第七節(jié) 固定與連接零件的設計 (30)第七章 模具材料的選擇和加工 .(32)第一節(jié) 模具材料的選擇 (32)第二節(jié) 模具零件的加工 (32)第八章 模具的裝配和調試 .(36)第一節(jié) 模具裝配的概述 (36)第二節(jié) 冷沖模裝配 (37)第三節(jié) 模具的試沖和調試 (39)結論 .(41)參考文獻 .(42)致 謝 .(43)進度計劃表學院:XXX 專業(yè) XXXX 學號:XXX 姓名:XX序號起止日期 計劃內容 實際完成情況檢查日期及檢查人簽名1 2013.3.18 ~3.24 查閱資料,完成實習報告,進度計劃表;2 2013.3.25 ~3.31 查找外文資料,完成開題報告;3 2013.4.1 ~4.7 完成外文翻譯;4 2013.4.8 ~4.14 測繪,制件設計、工藝分析及基本尺寸的計算;5 2013.4.15 ~4.28 裝配草圖設計;6 2013.4.29 ~5.5 繪制裝配圖;7 2013.5.6 ~5.19 裝配圖的修改及零件圖的繪制;8 2013.5.20 ~6.2 編寫設計說明書;9 2013.6.3 ~ 檢查畢業(yè)設計相關內容,完成修改,為答辯做準備;指導教師簽名: 指導教師批準日期: 年 月 日 注:1、 “檢查人簽名”一欄和“指導教師批準日期”由教師用筆填寫;2、畢業(yè)設計(論文)完成后此表裝入畢業(yè)設計(論文)檔案袋。擬選題目 門窗插銷連接件模具設計選題依據(jù):模具工業(yè)史制造業(yè)中的一項基礎產(chǎn)業(yè),是技術成果轉化的基礎。同時本身又是高新技術產(chǎn)業(yè)的重要領域,在歐美等工業(yè)發(fā)達國家被稱為“點鐵成金”的“磁力工業(yè)” 。美國工業(yè)界認為“模具工業(yè)是美國功業(yè)的基石” ??v觀發(fā)達國家對模具工業(yè)的認識與重視,我們能感受到制造理念陳舊則是我國模具工業(yè)發(fā)展滯后的直接原因。模具技術水平的高低,決定著產(chǎn)品質量、效益和新產(chǎn)品開發(fā)能力,它已成為衡量一個國家制造業(yè)水平高低的重要標志。因此,模具是國家重點鼓勵和支持發(fā)展的技術和產(chǎn)品,現(xiàn)代模具是多學科知識集聚的高新技術產(chǎn)業(yè)的一部分,是國民經(jīng)濟的裝備產(chǎn)業(yè),其技術、資金與勞動相對密集。目前,我國模具工業(yè)的當務之急是加快技術進步,調整產(chǎn)品結構,增加高檔模具的比重,質中求效益,提高模具的國產(chǎn)化程度,減少對進口模具的依賴?;诂F(xiàn)狀并結合本校的教學特色,選用門窗插銷連接件模具設計為本次畢業(yè)設計的題目。研究意義:生產(chǎn)實踐類的畢業(yè)設計有助于我們對大學所學課程進行全方位的復習與應用,會對未來我們對模具專業(yè)壓鑄方面的應用有更好的了解,也對之前做過的課程設計轉化成現(xiàn)代社會的生產(chǎn)有很大幫助。 例如沖壓件工藝性分析: 材料性能分析:是否具有良好的沖壓工藝性能; 工件結構分析: 設計該零件的沖壓生產(chǎn)工藝,編制其冷沖壓工藝卡片,要求至少提出兩種以上的沖壓工藝方案分析比較,確定可行的工藝方案。 通過實際性的門窗插銷連接件模具設計,我就能更好的明白,以上這些設計的作用,以及在實際應用上的意義。綜合運用沖壓模課程和其它有關選修課程的理論及生產(chǎn)實踐的知識去分析和解決模具設計問題,并使所學專業(yè)知識得到進一步鞏固和深化。學習模具設計的一般方法,了解和掌握常用模具整體設計、零部件的設計過程和計算方法,培養(yǎng)正確的設計思想和分析問題、解決問題的能力,特別是總體設計和計算的能力。通過計算和繪圖,學會運用標準、規(guī)范、手冊、圖冊和查閱有關技術資料等,培養(yǎng)模具設計的基本技能。文獻綜述(對已有相關代表性研究成果的綜合介紹與評價)隨著工業(yè)產(chǎn)品質量的不斷提高,沖壓產(chǎn)品生產(chǎn)正呈現(xiàn)多品種、少批量、復雜、大型、精密、更新?lián)Q代速度快的變化特點,沖壓模具正向高效、精密、長壽命、大型化方向發(fā)展。為適應市場變化,隨著計算機技術和制造技術的迅速發(fā)展,沖壓模具設計制造技術也正由手工設計、依靠人工經(jīng)驗和常規(guī)機械加工技術向以計算機輔助設計(CAD) 、數(shù)控切削加工、數(shù)控電加工為核心的計算機輔助設計與制造(CAD/CAM)技術轉變。隨著計算機的深入使用,我國不少企業(yè)已經(jīng)再嘗試或開展計算機輔助沖壓工藝設計 CAPP 系統(tǒng)已從工藝設計發(fā)展到公益信息的管理,設計方法也從派生式、混合式、創(chuàng)成式三種 CAPP 系統(tǒng)并舉的局面向智能化的混合式方向發(fā)展。沖壓模具在高技術驅動和支柱產(chǎn)業(yè)應用需求的推動下,形成一個巨大的產(chǎn)業(yè)鏈條,從上游的材料工業(yè)和加工、檢測設備到下游的機械、汽車、摩托車、家電、電子通信、建筑建材等幾大應用產(chǎn)業(yè)??梢?,未來我國模具工業(yè)和技術的主要發(fā)展方向將是:大力普及、廣泛應用 CAD/CAE/CAM 技術,逐步走向集成化?,F(xiàn)代模具設計制造不僅應強調信息的集成,更應該強調技術、人和管理的集成。提高大型、精密、復雜與長壽命模具的設計與制造技術,逐步減少模具的進口量,增加模具的出口量。提高模具標準化水平和模具標準件的使用率。模具標準件是模具基礎,其大量應用可縮短模具設計制造周期,同時也顯著提高模具的制造精度和使用性能,大大地提高模具質量。發(fā)展快速制造成型和快速制造模具,即快速成型制造技術,迅速制造出產(chǎn)品的原型與模具,降低成本推向市場。積極研究與開發(fā)模具的拋光技術、設備與材料,滿足特殊產(chǎn)品的需要。推廣應用高速銑削、超精度加工和復雜加工技術與工藝,滿足模具制造的需要。開發(fā)優(yōu)質模具材料和先進的表面處理技術,提高模具可靠性。研究和應用模具的高速測量技術、逆向工程與并行工程,最大限度的提高模具開發(fā)效率與成功率。開發(fā)新的成型工藝與模具,以滿足未來的多學科多功能綜合產(chǎn)品開發(fā)設計技術。研究內容(包括基本思路、框架、主要研究方式、方法等)本次設計內容為門窗插銷連接件模具的排樣和模具設計,重點介紹了零件的排樣、工藝方案的確定、模具刃口尺寸的計算等,最后畫出零件圖,及裝配圖。具體步驟分為:1、沖壓件的工藝分析與設計;2、沖裁件的排樣;3、沖裁間隙的選用;4、沖壓力的計算;5、確定模具壓力中心;6、計算凸、凹模具刃口的尺寸;7、沖裁部分及零件的設計;8、繪制總裝配圖及零件圖。在開始模具設計時,應考慮幾種方案,衡量每種方案的優(yōu)缺點,再從中優(yōu)先一種。在設計時要多參考過去所設計的類似圖紙,并了解他在制造和使用方面的情況,吸取其中的經(jīng)驗和教訓。多閱讀一些與沖壓模具設計有關的中外書籍和雜志,從中擴大自己的知識面,但應當注意書本上介紹的東西,與現(xiàn)實情況相比,具有一定的時間差。經(jīng)常關心各類產(chǎn)品上的沖壓制品,分析其各個系統(tǒng)、分型面選擇及模具結構。因為這類沖壓制品都是近幾年所生產(chǎn)的,它將與書本的知識和自己的現(xiàn)有的設計進行分析比較,可提高現(xiàn)有的設計水平。觀察國內外比較先進的沖壓模具,分析其結構特點,用來充實自己的設計知識,并把這些模具上的一些有用的結構移植到自己的設計中去。借鑒夾具和有關機械設計中有用的結構,來充實沖壓模具設計。經(jīng)常關心自己設計的模具在制造和使用的一些情況,并加以分析總結。一個工廠的模具設計部門應該是一個整體,不能每個設計人員各自為政,特別是模具總體結構方面,必須有專門人員負責。一般設計思路為:(1)全面了解制品的形狀,尺寸,重量等,作為設計的依據(jù)。 (2)廣泛搜集資料,了解國內外概況,提高設計思維的起點。 (3)初步設計。該步驟可分為方案設計,草圖設計。方案設計是指在短時間內繪制出幾種結構原理圖,在廣泛征求意見的基礎上,確定兩三種方案。草圖設計是對選出的方案,從工程、材料、制造等方面進行分析研究,將原理圖繪制出比較詳細的結構草圖。 (4)圖紙設計。在初步設計的基礎上,對主要零件和機構進行強度,穩(wěn)定性,熱性能等計算,確定基礎尺寸,畫出試制用圖紙。研究進程安排進度安排: 2013.3.18~3.24 查閱資料,完成實習報告,進度計劃表;2013.3.25~3.31 查找外文資料,完成開題報告;2013.4.1~4.7 完成外文翻譯;2013.4.8~4.14 測繪,制件設計、工藝分析及基本尺寸的計算;2013.4.15 ~4.28 裝配草圖設計;2013.4.29~5.5 繪制裝配圖;2013.5.6~5.19 裝配圖的修改及零件圖的繪制;2013.5.20 ~6.2 編寫設計說明書;2013.6.3~6.15 說明書的編寫;2013.6.3~6.15 檢查畢業(yè)設計相關內容,完成修改。主要參閱文獻李光耀,淺談現(xiàn)代模具設計與制造[J].太原理工大學學報,2001成虹.沖壓工藝與模具設計.成都:電子科技大學出版社,2000 許發(fā)樾.實用模具設計與制造手冊.北京:機械工業(yè)出版社,2001 郝濱海.沖壓模具簡明手冊.北京:化學工業(yè)出版社,2005 王海同、孫勝、肖白白.實用沖壓設計手冊.北京:機械工業(yè)出版社。1995 梁炳文.冷沖壓工藝手冊.北京:北京航空航天大學出版社,2004 趙昌盛.實用模具材料應用手冊.北京:機械工業(yè)出版社,2005 夏琴香.沖壓成型工藝及模具設計.廣州:華南理工大學出版社,2004 高軍、李熹平、修大鵬.沖壓模具標準件選用與設計指南.北京化學工業(yè)出版社,2007薛啓翔.沖壓模具設計制造難點與竅門.北京:機械工業(yè)出版社周永泰,模具設計和加工技術的發(fā)展方向[J].中國模具工業(yè)協(xié)會學報,2000,2董占峰,王成瑞,綠色模具設計概論[M].綿陽:西南科技大學出版社,2003.江昌勇,模具設計中的可靠性問題[J].常州工學院延陵學院學報.2001.10楊慶東,現(xiàn)代模具制造的高速加工技術[M].北京:機械出版社,2004.白釗,林慶文,賀艷苓,有限分析在沖壓模具設計中的應用[J].中國模具工業(yè)協(xié)會學報,2004,12曲慶文,邵淑玲,模具設計中的摩擦問題研究[M].山東理工大學出版社,2001.張培耘,戴勇,華???,袁國定,國內模具工業(yè)技術現(xiàn)狀與發(fā)展趨勢[M].江蘇理工大學機械工業(yè)學院出版社,2003.馮柄亮,韓泰榮,蔣文森,模具設計與制造簡明手冊[M].上??茖W技術出版社,2002潘慶修,模具制造工藝教程[M].電子工業(yè)出版社.2007趙昌盛,使用模具材料應用手冊[M].北京:機械工業(yè)出版社.2005.6付建軍,韓飛,吳江柳,模具制造工藝[M].北京:機械工業(yè)出版社,2004.甄瑞麟,模具制造工藝學[M].北京:清華大學出版社,2005,1 甘永立,幾何量公差與檢測[M].上海:上??朴眉夹g出版社,2001,4 宋愛平,CAD/CAM 綜合實訓指導書[M].北京:機械工業(yè)出版社,2006,1唐德修. 薄壁金屬沖壓拉深成型工藝的研究.西南師范大學學報,2008 年 6 月(第 3 期).季忠,王曉麗,劉韌.沖壓模具設計自動化及實例—Solid Works 應用.第 1 版.北京:化學工業(yè)出版社,2007:101-107 王華,尚振國.Solid Works 在沖壓模具設計中的應用,中國科技信息 2008 年,第 15 期:141-142.聶蘭啟,聶伯揚. 薄壁深錐零件的拉伸成形.《模具制造》 ,2008 年,第 8 期,29-32. [10]鄧明,呂琳.沖壓成形工藝及模具.第 1 版.北京:化學工業(yè)出版社,2006 年:117-125.ZHOU Li-Qun,LI Yu-Ping,ZHOU Yi-Chun.A Mechanics Model for Stamping a Sheet on Elastic Die with Large Deformation.Journal of Shanghai Uniwersity(English Edition),2002,6(2):130-135.Tiegang Fang*,Ji Zhang.Closed-form exact solutions of MHD viscous flow over a shrinking sheet.Commun Nonlinear Sci Numer Simulat, 14(2009): 2853-2857.Szucs, A. Belina, K. Rheological and thermal analysis of the filling stage of injection moulding[J] Express Polymer Letters, v 6, n 8, p 672-679, 2012Kovács, J.G., Sikló, B. Source: Polymer Testing, v 30, n 5, p 543-547, August 2011Piotter, V.,Bauer, W.; Knitter, R.; Mueller, M.; Mueller, T.; Plewa, K. Source: Microsystem Technologies, v 17, n 2, p 251-263, February其它說明指導教師是否同意開題簽名:年 月 日教研室教學負責人簽署簽名:年 月 日說明:1、開題報告工作從第七學期學生確定畢業(yè)設計(論文)題目后開始,在教師指導下,學生通過調研、收資后,于第八學期第四周前完成。2、紙張?zhí)顚懖粔蚩闪砑痈巾摗?Forming and stamping of sheet metals NC INCREMENTAL SHEET METAL FORMINGProceedings of International Technology and Innovation Conference 20094 Sheet metal forming and blanking4.1 Principles of die manufacture4.1.1 Classification of diesIn metalforming,the geometry of the workpiece is established entirely or partially by the geometry of the die.In contrast to machining processes,ignificantly greater forces are necessary in forming.Due to the complexity of the parts,forming is often not carried out in a single operation.Depending on the geometry of the part,production is carried out in several operational steps via one or several production processes such as forming or blanking.One operation can also include several processes simultaneously(cf.Sect.2.1.4).During the design phase,the necessary manufacturing methods as well as the sequence and number of production steps are established in a processing plan(Fig.4.1.1).In this plan,the availability of machines,the planned production volumes of the part and other boundary conditions are taken into account.The aim is to minimize the number of dies to be used while keeping up a high level of operational reliability.The parts are greatly simplified right from their design stage by close collaboration between the Part Design and Production Departments in order to enable several forming and related blanking processes to be carried out in one forming station.Obviously,the more operations which are integrated into a single die,the more complex the structure of the die becomes.The consequences are higher costs,a decrease in output and a lower reliability.2Fig.4.1.1 Production steps for the manufacture of an oil sumpTypes of diesThe type of die and the closely related transportation of the part between dies is determined in accordance with the forming procedure,the size of the part in question and the production volume of parts to be produced.The production of large sheet metal parts is carried out almost exclusively using single sets of dies.Typical parts can be found in automotive manufacture,the domestic appliance industry and radiator production.Suitable transfer systems,for example vacuum suction systems,allow the installation of double-action dies in a sufficiently large mounting area.In this way,for example,the right and left doors of a car can be formed jointly in one working stroke(cf.Fig.4.4.34).Large size single dies are installed in large presses.The transportation of the parts from one forming station to another is carried out mechanically.In a press line with single presses installed one behind the other,feeders or robots can be used(cf.Fig.4.4.20 to 4.4.22),whilst in large-panel transfer presses,systems equipped with gripper rails(cf.Fig.4.4.29)or crossbar suction systems(cf.Fig.4.4.34)are used to transfer the parts.3Transfer dies are used for the production of high volumes of smaller and medium size parts(Fig.4.1.2).They consist of several single dies,which are mounted on a common base plate.The sheet metal is fed through mostly in blank form and also transported individually from die to die.If this part transportation is automated,the press is called a transfer press.The largest transfer dies are used together with single dies in large-panel transfer presses(cf.Fig.4.4.32).In progressive dies,also known as progressive blanking dies,sheet metal parts are blanked in several stages;generally speaking no actual forming operation takes place.The sheet metal is fed from a coil or in the form of metal strips.Using an appropriate arrangement of the blanks within the available width of the sheet metal,an optimal material usage is ensured(cf.Fig.4.5.2 to 4.5.5). The workpiece remains fixed to the strip skeleton up until the laFig.4.1.2 Transfer die set for the production of an automatic transmission for an automotive application-st operation.The parts are transferred when the entire strip is shifted further in the work flow direction after the blanking operation.The length of the shift is equal to the center line spacing of the dies and it is also called the step width.Side shears,very precise feeding devices or pilot pins ensure feed-related part accuracy.In the final production operation,the finished part,i.e.the last part in the sequence,is disconnected from the skeleton.A field of application for progressive blanking tools is,for example,in the production of metal rotors or stator blanks for electric motors(cf.Fig.4.6.11 and 4.6.20).In progressive compound dies smaller formed parts are produced in several sequential operations.In contrast to progressive dies,not only blanking but also forming operations are performed.However, the workpiece also 4remains in the skeleton up to the last operation(Fig.4.1.3 and cf.Fig.4.7.2).Due to the height of the parts,the metal strip must be raised up,generally using lifting edges or similar lifting devices in order to allow the strip metal to be transported mechanically.Pressed metal parts which cannot be produced within a metal strip because of their geometrical dimensions are alternatively produced on transfer sets.Fig.4.1.3 Reinforcing part of a car produced in a strip by a compound die setNext to the dies already mentioned,a series of special dies are available for special individual applications.These dies are,as a rule,used separately.Special operations make it possible,however,for special dies to be integrated into an operational Sequence.Thus,for example,in flanging dies several metal parts can be joined together positively through the bending of certain metal sections(Fig.4.1.4and cf.Fig.2.1.34).During this operation reinforcing parts,glue or other components can be introduced.Other special dies locate special connecting elements directly into the press.Sorting and positioning elements,for example,bring stamping nuts synchronised with the press cycles into the correct position so that the punch heads can join them with the sheet metal part(Fig.4.1.5).If there is sufficient space available,forming and blanking operations can be carried out on the same die.Further examples include bending,collar-forming,stamping,fine blanking,wobble blanking and welding operations(cf.Fig.4.7.14 and4.7.15).5Fig.4.1.4 A hemming dieFig.4.1.5 A pressed part with an integrated punched nut4.1.2 Die developmentTraditionally the business of die engineering has been influenced by the automotive industry.The following observations about the die development are mostly related to body panel die construction.Essential statements are,however,made in a fundamental context,so that they are applicable to all areas involved with the production of sheet-metal forming and blanking dies.Timing cycle for a mass produced car body panelUntil the end of the 1980s some car models were still being produced for six to eight years 6more or less unchanged or in slightly modified form.Today,however,production time cycles are set for only five years or less(Fig.4.1.6).Following the new different model policy,the demands ondie makers have also changed fundamentally.Comprehensive contracts of much greater scope such as Simultaneous Engineering(SE)contracts are becoming increasingly common.As a result,the die maker is often involved at the initial development phase of the metal part as well as in the planning phase for the production process.Therefore,a much broader involvement is established well before the actual die development is initiated.Fig.4.1.6 Time schedule for a mass produced car body panelThe timetable of an SE project7Within the context of the production process for car body panels,only a minimal amount of time is allocated to allow for the manufacture of the dies.With large scale dies there is a run-up period of about 10 months in which design and die try-out are included.In complex SE projects,which have to be completed in 1.5 to 2 years,parallel tasks must be carried out.Furthermore,additional resources must be provided before and after delivery of the dies.These short periods call for pre-cise planning,specific know-how,available capacity and the use of the latest technological and communications systems.The timetable shows the individual activities during the manufacturing of the dies for the production of the sheet metal parts(Fig.4.1.7).The time phases for large scale dies are more or less similar so that this timetable can be considered to be valid in general.Data record and part drawingThe data record and the part drawing serve as the basis for all subsequent processing steps.They describe all the details of the parts to be produced. The information given in the Fig.4.1.7 Timetable for an SE projectpart drawing includes: part identification,part numbering,sheet metal thickness,sheet metal quality,tolerances of the finished part etc.(cf.Fig.4.7.17).To avoid the production of physical models(master patterns),the CAD data should describe the geometry of the part completely by means of line,surface or volume models.As a general rule,high quality surface data with a completely filleted and closed surface geometry must be made available to all the participants in a project as early as possible.8Process plan and draw developmentThe process plan,which means the operational sequence to be followed in the production of the sheet metal component,is developed from the data record of the finished part(cf.Fig.4.1.1).Already at this point in time,various boundary conditions must be taken into account:the sheet metal material,the press to be used,transfer of the parts into the press,the transportation of scrap materials,the undercuts as well as thesliding pin installations and their adjustment.The draw development,i.e.the computer aided design and layout of the blank holder area of the part in the first forming stage–if need bealso the second stage–,requires a process planner with considerable experience(Fig.4.1.8).In order to recognize and avoid problems in areas which are difficult to draw,it is necessary to manufacture a physical analysis model of the draw development.With this model,theforming conditions of the drawn part can be reviewed and final modifications introduced,which are eventually incorporated into the data record(Fig.4.1.9).This process is being replaced to some extent by intelligent simulation methods,through which the potential defects of the formed component can be predicted and analysed interactively on the computer display.Die designAfter release of the process plan and draw development and the press,the design of the die can be started.As a rule,at this stage,the standards and manufacturing specifications required by the client must be considered.Thus,it is possible to obtain a unified die design and to consider the particular requests of the customer related to warehousing of standard,replacement and wear parts.Many dies need to be designed so that they can be installed in different types of presses.Dies are frequently installed both in a production press as well as in two different separate back-up presses.In this context,the layout of the die clamping elements,pressure pins and scrap disposal channels on different presses must be taken into account.Furthermore,it must be noted that drawing dies working in a single-action press may be installed in a double-action press(cf.Sect.3.1.3 and Fig.4.1.16).9Fig.4.1.8 CAD data record for a draw developmentIn the design and sizing of the die,it is particularly important to consider the freedom of movement of the gripper rail and the crossbar transfer elements(cf.Sect.4.1.6).These describe the relative movements between the components of the press transfer system and the die components during a complete press working stroke.The lifting movement of the press slide,the opening and closing movements of the gripper rails and the lengthwise movement of the whole transfer are all superimposed.The dies are designed so that collisions are avoided and a minimum clearance of about 20 mm is set between all the moving parts.金屬板料的成形及沖裁數(shù)控漸進成形研究技術與創(chuàng)新國際會議論文集 20094 金屬板料的成形及沖裁4. 模具制造原理4.1.1 模具的分類在金屬成形的過程中,工件的幾何形狀完全或部分建立在模具幾何形狀的基礎上10的。與機械加工相比,在成形時明顯更大的壓力是必要的。由于零件的復雜性,往往不是只進行一次操作就能成形的。根據(jù)零件的幾何形狀,通過由一個或幾個生產(chǎn)過程例如成形或沖裁的幾個操作步驟進行生產(chǎn)。一個操作也可以同時完成幾個過程。在設計階段,合理的生產(chǎn)步驟、生產(chǎn)次序以及生產(chǎn)工序數(shù)都由生產(chǎn)計劃來決定(如圖 4.1.1) 。在這個計劃中,應該對機器的可利用性、零件的計劃生產(chǎn)量和其他限制條件予以考慮。其目的是在保證高水平的操作可靠性的同時最大限度地減少需要使用的模具數(shù)量。通過部件設計部和生產(chǎn)部之間的緊密合作促使幾個成形和有關的沖裁過程能在一個成形操作中完成,如此一來,僅僅在設計階段就可以大大地簡化部件。顯然,越是更多的操作集成到一個單獨的模具上,模具結構就必然更為復雜。其后果是成本較高、產(chǎn)量下降和可靠性較低。圖 4.1.1 油底殼的生產(chǎn)步驟11模具類型模具的類型和模具之間零部件的密切相關運輸是根據(jù)成形步驟、預算的部件的尺寸、要生產(chǎn)的部件的生產(chǎn)量來確定的。大型鈑金零件的生產(chǎn)幾乎完全采用單套模具來實現(xiàn)的。典型零件可在汽車制造、國內家電業(yè)以及散熱器的生產(chǎn)中找到。適當?shù)霓D移系統(tǒng),例如真空抽吸系統(tǒng),可以使雙動模安裝在一個足夠大的安裝面上。例如,用這種方式可以使汽車左右車門在一個工作行程中一起成形。 (參考圖 4.4.34) 。尺寸大的單套模具需安裝在大型壓力機上。部件從一個成形點到另一個成形點的運輸是機械化地執(zhí)行的。工人或機器人可以使用與單工序壓力機一前一后安裝的沖壓線(對比圖 4.4.20 與 4.4.22),同時,在大型多工位壓力機上,系統(tǒng)還配備了夾鉗軌(如圖 4.4.29)或交叉抽吸系統(tǒng)(如圖 4.4.34)來運輸部件。多工位轉換模是用于小型和中型零件的大批量生產(chǎn)(如圖 4.1.2) 。它們由幾個安裝在同一個基準平面上的單工序模具組成。金屬板料的送進主要以機械手運送的方式,也可以人工地從一個模具運到另一個模具。如果這部分的運輸自動化,那么此時的壓力就稱為轉換壓力。在大板料轉換沖壓線上,最大的多工位轉換模要與單工序模具配合使用(參考圖 4.4.32) 。級進模,也稱為漸進沖裁模,鈑金件是分階段沖裁的; 一般來說,沒有實實在在的成形操作。 鈑金是以金屬圈或金屬條的形式送進的。通過使用尺寸適宜的金屬板料和優(yōu)化的材料利用率可以達到對板料的合理利用(對比圖 Fig.4.5.2 與圖 4.5.5) 。工件一直固定在載體上,直到最后一次操作。沖裁完成后,整個條料按照工序流動方向移動時,該部件隨著轉移。移動的長度等于模具間中心線的距離,它也被稱為步距。切邊,通過使用非常精確的進給裝置或試點引腳確保相關進給零件精度。在最后一個工位,即最后一道工序,已成形的部分于載體斷開。例如電動機金屬轉子和定子的生產(chǎn)就是漸進沖裁模的一個應用領域(如圖.4.6.11 和 4.6.20) 。12圖 4.1.2 轉移成套模具在機動裝置中的自動變速器上生產(chǎn)應用較小的成形部件使用復合級進模通過幾個連續(xù)的操作即可完成后生產(chǎn)。與級進模相比,不僅可以完成沖裁,而且能完成成形操作。然而,工件還是與載體相連一直到最后一步操作(如圖 4.1.3 和對比圖 4.7.2) 。由于零件的高度,鋼帶必須提高時,通常使用起重邊緣或類似的起重設備,以便實現(xiàn)條料金屬的機械化運輸。由于其幾何尺寸而不能用一個金屬條料生產(chǎn)出來的沖壓金屬零件選擇性地在轉移設置上生產(chǎn)。13圖 4.1.3 用一個條料在復合級進模上生產(chǎn)的汽車加強筋接下來時已經(jīng)提到過的模具,一系列特殊模具適用于個別特殊運用。按規(guī)定,這些模具是單獨使用的。但是,特殊的操作使得特殊的模具集成到一個工序上成為可能。因此,例如,使用翻邊模幾個金屬部件組合在一起能積極通過某些區(qū)域的彎曲(如圖4,1,4 和對比圖 2,1,34) 。在此期間加強部分,膠水或其他組件的運作可實施。其他的特殊模具使特殊的連接部件直接定位在壓力機上。裝配和定位部件,例如,引進與壓力周期同步的沖頭到指定的位置 以便沖頭與鈑金零件(如圖 4.1.5) 。如果有足夠的可用空間,成形和沖裁操作可以在同一模具上完成。更一步的例子包括彎曲,滾壓成形,沖壓,精密沖裁,震動沖裁和焊接操作(對比圖 4.7.14 和圖 4.7.15) 。如圖 4.1.4 卷邊模14如圖 4.1.5 帶有整體沖壓螺母的沖壓件4.1.2 模具開發(fā)汽車行業(yè)的發(fā)展已經(jīng)必然地影響了模具工程的發(fā)展。以下對與模具開發(fā)的研究主要是關于車身覆蓋件模具結構的。然而,用一個基本的環(huán)境獲得實質的結論,以便于它們適用于包括鈑金成形模和沖裁模的制造在內的所有領域。為汽車覆蓋件的大批量生產(chǎn)定時生產(chǎn)周期直到 20 世紀 80 年代末,部分車型以 6 至 8 年大致維持不變或略加修改的形式而仍然處于制作中。然而今天,生產(chǎn)周期只有 5 年或更少(如圖 4.1.6) 。隨著不同的新設計工藝的發(fā)展,客戶對模具制造商的要求也發(fā)生了根本變化。更大范圍的綜合合同,如同步工程(SE)合同已變得越來越普遍。結果是,模具制造商往往僅處于金屬零件的最初的發(fā)展階段,以及生產(chǎn)過程的規(guī)劃階段。因此,在實際模具開發(fā)和啟動之前應該拓展更廣泛、長遠的業(yè)務。15圖 4.1.6 汽車覆蓋件的大批量生產(chǎn)的時間表同步工程項目時間表16在車身覆蓋件的生產(chǎn)過程中,只有極少部分時間用于模具的制造。對于大型模具,大約有十個月的準備期,其中包括模具的設計與調試。對于復雜的同步工程項目中,必須在 1.5 至 2 年內完成,必須能完成同步任務。此外,在模具交付前后必須具有更多的產(chǎn)品資料說明。這些短期的準備需要優(yōu)化的設計、特別的技能、可利用空間以及最新技術的使用和通訊系統(tǒng)。該時間表顯示,用于生產(chǎn)鈑金件的模具的制造期間的個人工作內容(如圖 4.1.7) 。大型模具的生產(chǎn)計劃或多或少都相似,以便于這個時間表可以被認為是普遍有效的。圖 4.1.7 同步工程項目時間表數(shù)據(jù)采集和零件圖數(shù)據(jù)采集和零件圖是所有工序步驟的基礎。它們描述了要生產(chǎn)部件的所有細節(jié)。在零件圖提供的信息包括:零件識別,部件的編號,板材厚度,板材的質量,成品零件的公差等(參考圖 4.7.17) 。為了避免實體模型(主模型)的制作,CAD 圖形應通過線、面或體積模型來完整地描述工件的幾何形狀。一般地,必須盡可能早地繪制好具有完全封閉曲面的高質量片體數(shù)模來滿足所有產(chǎn)品負責人的使用要求。17工藝方案和制圖計劃工藝方案,即生產(chǎn)鈑金件應遵循的操作順序,是根據(jù)以往生產(chǎn)出的零件的經(jīng)驗數(shù)據(jù)制定的(參考圖 4.1.1) 。在此階段,必須提前及時考慮到各種邊界條件:金屬板材料,所需壓力,零件的加工硬化,廢料的排出,廢料刀以及導料銷的安裝和調試。制圖計劃,即計算機輔助設計和第一個成形階段的部件的壓料圈的布局(如果第二個成形階段也需要),要求相當有經(jīng)驗的人來制定(如圖 4.1.8) 。為了識別和避免難繪制的區(qū)域,有必要來制造制圖計劃的實體分析模型。通過這一模型,可對所繪制的部件的成形條件進行審查和準確的修改說明,并且這些內容最終包含在數(shù)據(jù)采集里(如圖 4.1.9) 。智能模擬方法正在一定程度上取代著這一進程,通過智能模擬,已成形件的潛在缺陷可以在電腦顯示其綜合預測和分析。圖 4.1.8 CAD 對制圖計劃的數(shù)字分析18圖 4.1.9 CAD 制圖計劃實體分析模型模具設計工藝方案、制圖計劃以及沖壓力設定好后,就可以開始模具的設計了。一般規(guī)定,在這個階段,必須考慮客戶要求的標準和制造規(guī)格。因此,可能獲得一個統(tǒng)一的模具設計標準,并可能考慮客戶關于存放標準、更換和易磨損部件的特殊要求。許多模具需要通過設計來使他們可以安裝在不同類型的壓力機。模具往往即可以安裝在一臺壓力機上,也可以安裝在兩個不同的獨立的后勤壓力機上。在這種情況下,必須考慮模具鎖模部分,壓腳及廢料板在不同壓力機上的分布情況。此外,必須指出,拉絲模在單動壓力機的工作時可能會在雙動壓力機上安裝(對比章節(jié) 3.1.3 和圖 4.1.16) 。在模具的設計和其尺寸的確定階段,考慮夾鉗和橫木轉移部件的運動的靈活性尤為重要(參考章節(jié) 4.1.6) 。這些描述了,在一個完整的工作行程中,壓力傳輸系統(tǒng)組件和模具零部件之間的相對運動。壓力機滑行裝置的上行、夾鉗軌的打開和閉合運動以及整個傳輸系統(tǒng)的縱向運動都是有條不紊的進行的。模具通過設計來避免發(fā)生碰撞,并且所有運動部件之間設置最小約 20 毫米的間隙。1
收藏