丁集礦井1.8Mta新井設(shè)計含5張CAD圖-采礦工程.zip
丁集礦井1.8Mta新井設(shè)計含5張CAD圖-采礦工程.zip,礦井,1.8,Mta,設(shè)計,CAD,采礦工程
Fuzzy evaluation on geological conditions of coal seam in China
Zhang Dongsheng, Zhang Xianchen & Yan Xuefeng
China University of Mining & Technology, Xuzhou, Jiangsu, P. R. China
Dszhang123@263.net
Abstract
The geological conditions of coal seam are evaluated quantitatively by using fuzzy method and from pointview of coal mining. According to the evaluation results, decision-making on mining techniques, mining programming and design, production management can be carried out effectively. The latest developments in China are introduced. The evaluation contents, the structure and index system of evaluation factors, the membership functions and weights of evaluation factor, evaluation model and reliability are stated in detail. The effective application of fuzzy evaluation in the prediction of coal face output is introduced emphatically. Fuzzy evaluationon geological conditions of coal seam is the basic work that ensures a mine run efficiently, safely and steadily .
Keywords:Fuzzy evaluation; geological conditions; evaluation
1 INTRDUCTION
To exploit the coal resource rationally means that the mining technical level and the relevant technical decisions are suitable for the characteristic and difference of coal geological conditions. If the evaluation is far below or above the actual geological conditions, it is unfavorable to make the most of the coal natural superiority and easy to make false technical decisions. So, it is very important to improve mining effects and economic benefits that the geological conditions are evaluated appropriately and the corresponding measures are taken.
2 CONTENTS OF FUZZY EVALUATION
Based on the coal mining experience and rules summarized by widely investigation, the evaluation on geological conditions of coal seam should be taken by not only studying the influence of main factors to the selection of coal mining technology and mining effects, but also constructing a comprehensive supported by National Natural Science Foundation of China(NSFC) (50374065),NSFC for extinguished scholars (50225414) evaluation model with multi-levels and multi-factors by the use of mining theory, fuzzy mathematics andAnalytic Hierarchy Process (called AHP for short), etc. In addition, the evaluation reliability should be considered in the application of evaluation results. So, the complete contents of fuzzy evaluation should include:
(1) Investigating the experience and material of geological conditions, coal mining technology, technical effects, and safety state of face extraction in typical mining district.
(2) Determining the structure of evaluation factors and the index system of geological factors, the
membership functions and the weights of evaluation factors, and establishing the fuzzy evaluation model by summarizing the influence of geological factors to coal mining technology and using the methods of fuzzy mathematics, etc. K
(3) Dividing the coal seam into many smaller blocks ij (i is coal seam number, j is block number.)Kijaccording to geological reports, and making pre-mining evaluation of the blocks to get the pre-mining evaluation value Pij. K
(4) Making the second evaluation of typical blocks ij having been mined to get the evaluation valuePPij Pij according to the geological report and supplementary geological material after mining, is more suitable to practice. R = P''
(5) Analyzing the reliability of pre-mining evaluation, P'
( R is reliability index of the pre-mining evaluation K ), R ≤1.
(6) Making evaluation on the blocks, based on the Pij' and the Rij , the evaluation value of the blocks is:P0 = P' × Ri
(7) Modifying the evaluation model or making a new evaluation according to its application and actual requirement.
3 STRUCTURE AND INDEX SYSTEM OF EVALUATION FACTORS
The structure of evaluation factors reflects the connotation of evaluation. Its establishment should consider not only the general and specific difficult geological conditions, but also the principles of systematicness, feasibility and simplicity for the evaluation factors and indices obtained easily. Fuzzy evaluation on geological conditions of gently inclined or inclined coal seam in China consists of the evaluations for the general geological conditions and for the specific difficult geological conditions. The evaluation for the general geological conditions includes seven factors of geological structure, thickness of coal seam, stability of coal seam, pitch of coal seam, roof and floor of coal seam, hardness of coal seam and block dimension. The evaluation for the specific difficult geological conditions includes the other four factors of gas geology, hydrogeology, coal spontaneous combustion and the others besides the seven factors mentioned above. Furthermore, the geological structure contains three basic factors of fault, fold and magma. The stability of coal seam contains three basic factors of minability of coal seam, variability of coal seam and band coefficient. The roof and floor of coal seam contains four basic factors of immediate roof, main roof, false roof and immediate floor. The block dimension contains two basic factors of face length and advance length. So, there are fifteen basic factors altogether considering the thickness of coal seam, pitch of coal seam and hardness of coal seam. Quantitative indices should be selected rationally in order to evaluate the fifteen basic factors.
4 MEMBERSHIP FUNCTIONS OF EVALUA-TION FACTORS
The membership function of evaluation factor is the quantitative description on fuzzy relationship between the change of a geological factor and the mining effect. It can be obtained by using technical summary, scientific research achievement, statistic analysis and specialist experience comprehensively, and adopting the statistic analysis method, undetermined coefficient method and heterogeneous fuzzy statistic method, etc. Figure 1(a), (b), (c) and (e) show the membership functions ma (a ), m m (m), ml (l)and m s (s)of
coal seam pitch ( a ), thickness of coal seam (m), face length (l) and advance length (s). Membership functions of coal seam variance coefficient ( g ), minability of coal seam ( Km ), band (G ), immediate roof (o ), main roof ( N ), false roof (hv), immediate floor (Rc ) and magma (k) are m (r), m (K ), mG (G), m(s), mN (N ), m (h ), m (R ), mK (K ) , See fig.1. The membership functions mF(F) and mq (q) of fault (F) and fold (q) are where FN is the fault density, FL is the fault length coefficient, Fh is the fault drop height coefficient, q1 is the fold strength coefficient, q2 is the fold complexity coefficient.
5 WEIGHTS OF EVALUATION FACTORS
The essence of the weights of evaluation factors is the quantitative description on the relative importance of geological factors influencing the coal mining technology. To determine the weights of evaluation factors should take mining law as basis and take the mutual adaptability between geological condition and mining technology as main content, and should make full use of statistic data, research achievement and specialists’ experience. AHP is the method most in use at present. Based on the knowledge of specialist, this method is more suitable to solve the evaluation on geological conditions of concrete coal seam.
Table 1 shows the weights of geological factors obtained by AHP.
6 FUZZY EVALUATION MODEL
6.1 Optimal Model For Fuzzy Evaluation
The linear weighted comprehensive evaluation model is often used for fuzzy evaluation on geological conditions of coal seam. In recent years, the optimal model for fuzzy evaluation is presented to reduce the subjectivity of evaluation. Its main characteristic lies in using two -basic point method. That is to say, in the evaluation system with a number of blocks, there are an ideal point corresponding with good vector G (G=(g1, g2, ┄,gn)) and an anti-ideal point corresponding with bad vector B (B=(b1, b2, ┄,bn)). SupposeRR mihat the comprehensive evaluation values of i( i= (r11, r22, ┄, r1m) is , and then compute the generalized distances D (Ri, G) and D (Ri, B). If taking the square sum of weighted distances of all samples as optimal criterion, the optimal solution of the comprehensive evaluation value is
Figure 1. Membership functions of evaluation factors
6.2 Comprehensive Evaluation Model For Special Difficult Conditions
Based on above-mentioned fuzzy evaluation, a comprehensive evaluation model for special difficult geological conditions of coal seam is established to get the difficult coefficient D. The greater the value of D is the more difficult the geological mining conditions are. Because the influence of individual factor to whole evaluation should be embodied, continuous multiplication must be adopted when structuring the model. That is, D =1-B× P, where B is the evaluation value of special geological conditions, P is the evaluation value of general geological conditions.
Figure 2. Relationship between evaluation values and reliability
Figure 2 shows the characteristic of reliability of pre-mining evaluation, based on the pre-mining and after -mining evaluation and calculation of evaluation reliability of 12 mining districts and 107 typical coal seam blocks. The greater the value of pre-mining evaluation is, the better the coal seam conditions are, and the higher the reliability of pre-mining evaluation is. On the contrary, the less the value of pre-mining evaluation is, the worse the coal seam conditions are, and the
8 PREDICTION OF COAL FACE OUTPUT
Under the certain conditions of equipment, technique and management, there is a close relationship between coal face output and its geological conditions for a coal mine. Through the fuzzy evaluation on coal geological conditions and the statistic analysis on production-technique indices, the relationship between the coal face output and the fuzzy evaluation value can be fitted to establish a new model for the prediction of coal face output. There are many prediction models as linear equation, duality quadratic equation and exponential equation, etc. For example:
a =C1 + C 2 P (fully-mechanized coal mining technology)
a =D(C + CP + CP2) (fully-mechanized or conventionally-mechanized coal mining technology)
a =D(C + CP + CP2 + CP3 ) (blasting coal mining technology)
a =24.5(1.13 +1.24 ln P) (fully-mechanized coal mining technology with great power in Nantun Mine)
a =(14.66ln M -6.77)(1.28 +1.4ln P) (fully-mechanized coal mining technology with sublevel caving in Dongtan Mine)
where D is the difficult coefficient, C1, C2, C3, and C4 are statistic regression constants.
REFERENCES
[1]I.B.Turksen 1991. Measurement of membership functions and their acquisition. Fuzzy sets and Systems. 40:36-40.
[2]North-Holland. R.Knosala & W.Pedrycz. 1992. Evaluation of de-sign alternative in mechanical engineering. Fuzzy sets and Systems. 47:24-28.
[3]J.S.Dyer & R.K.Sarin. 1979. Measurable Multi-attribute Value Function. Operations Research
煤層地質(zhì)條件模糊綜合評價在中國的應(yīng)用
張東升 張先塵 楊學(xué)峰
江蘇徐州中國礦業(yè)大學(xué)Dszhang123@263.net
摘要:地質(zhì)條件煤層定量評價采用模糊方法和pointview采煤。根據(jù)評價結(jié)果,采礦技術(shù)決策,采礦規(guī)劃與設(shè)計,生產(chǎn)管理可以有效地進(jìn)行。本文介紹是中國的最新事態(tài)發(fā)展。評價的內(nèi)容,結(jié)構(gòu)和指標(biāo)體系等評價因素,隸屬函數(shù)和權(quán)重的評價因子,評價模型和可靠性是在細(xì)節(jié)。重點介紹有效應(yīng)用模糊綜合評價來預(yù)測采煤工作面產(chǎn)量?;镜墓ぷ魇侥:C合評價的地質(zhì)煤層條件,以確保煤礦高效,安全和穩(wěn)步運(yùn)行。
關(guān)鍵詞:模糊評價;地質(zhì)條件評價
1、簡介
合理利用煤炭資源意味著用采礦技術(shù)水平和相關(guān)技術(shù)決定適合不同特點和地質(zhì)條件下的煤。如果評價是遠(yuǎn)低于或高于以上的實際地質(zhì)情況,這對大多數(shù)煤炭自然優(yōu)勢是不利的并容易作出不實的技術(shù)決定。因此,地質(zhì)條件評價和相應(yīng)的適當(dāng)采取措施對提高開采效果和經(jīng)濟(jì)效益是非常重要的。
2、目錄模糊評價
基于廣泛調(diào)查總結(jié)了的煤炭開采經(jīng)驗和規(guī)則,煤層地質(zhì)條件評價不但應(yīng)采取的學(xué)習(xí)選擇煤炭開采技術(shù)和采礦業(yè)等主要影響因素而且而且還使用采礦理論建設(shè)多層次和多因素的綜合評價模型,模糊數(shù)學(xué)和層次分析法( AHP法要求短期)等。此外,評價的可靠性中應(yīng)審議應(yīng)用評價結(jié)果。因此,完整的模糊綜合評價的內(nèi)容應(yīng)包括:
( 1 )調(diào)查的經(jīng)驗和材料的地質(zhì)條件,煤礦開采技術(shù),技術(shù)的影響,以及國家的安全面臨提取典型采區(qū)。
( 2 )通過總結(jié)地質(zhì)因素的影響,以煤炭開采技術(shù)和使用模糊數(shù)學(xué)方法等,確定評價的結(jié)構(gòu)因素和指標(biāo)體系的地質(zhì)因素,隸屬函數(shù)和權(quán)重的評價因素,建立模糊評價模型。
( 3 )根據(jù)地質(zhì)報告劃分煤層成許多較小的塊矩陣度Kij(i煤層號碼, J是塊號碼。 ),并事先采礦評價塊矩陣Kij并獲得前采礦評估價值。
( 4 )第二次評估典型塊矩陣Kij已獲得開采價值的評價矩陣P`ij,根據(jù)地質(zhì)報告和地質(zhì)采礦補(bǔ)充材料'矩陣Pij更適合應(yīng)用。
( 5 )采礦評價前的可靠性分析,矩陣矩陣矩陣Rij =P`ij/Pij(矩陣R是采礦前評價可靠性指標(biāo)矩陣Kij) ,矩陣R ≤ 1 。
( 6 )依據(jù)P`ij和Rij制作評價區(qū)塊,,評估價值的區(qū)塊是:Pij = P`ij× Rij。
( 7 )根據(jù)其申請和實際要求修改的評價模型或作出新的評價。
3結(jié)構(gòu)和指標(biāo)體系的評價因素
結(jié)構(gòu)的評價因素反映內(nèi)涵的評價。它的建立應(yīng)考慮不僅是一般和特殊困難的地質(zhì)條件,而且還有系統(tǒng)性,可行性和簡單的評價因素和指標(biāo)容易獲得的原則。模糊綜合評價在中國根據(jù)一般地質(zhì)條件和地質(zhì)條件的具體困難評估緩傾斜或傾斜煤層地質(zhì)條件。在評價一般地質(zhì)條件包括七個因素的地質(zhì)構(gòu)造,煤層厚度,穩(wěn)定的煤層,音高煤層,頂?shù)装宓拿簩?,煤層硬度和攔截層面。在評價具體困難的地質(zhì)條件,包括其他四個因素天然氣地質(zhì)學(xué),水文地質(zhì)學(xué),煤炭自燃和其他7個因素,除了如上所述。此外,地質(zhì)結(jié)構(gòu)包含三個基本因素斷層,褶皺和巖漿。。穩(wěn)定的煤層包含三個基本因素多層煤層,煤層變異與帶系數(shù)。煤層頂?shù)装宓拿簩影膫€基本要直接頂,老頂,偽頂和直接底。該區(qū)塊的層面包含兩個基本因素的工作面長度和推進(jìn)長度。因此,有15個基本因素完全考慮煤的煤層厚度,煤層間距和煤層硬度。為了評估15基本因素應(yīng)選擇合理的定量指標(biāo)。
4隸屬函數(shù)評價性因素
隸屬函數(shù)的評價因子是變化的地質(zhì)因素和開采效果的定量描述的模糊關(guān)系。它可使用技術(shù)總結(jié),科研成就,統(tǒng)計分析和全面專家經(jīng)驗,并通過統(tǒng)計分析方法,待定系數(shù)法和異構(gòu)模糊統(tǒng)計方法,等獲得。
圖1 a,b,c和e顯示的隸屬函數(shù),煤層間距,m煤層厚度,l工作面長度,s推進(jìn)長度,隸屬函數(shù)煤層變異系數(shù),minability煤層,,直接頂,老頂,偽頂,直接底,巖漿,見圖1 隸屬函數(shù)
這里Fn故障密度,F(xiàn)l是故障長度系數(shù),F(xiàn)h斷層落差系數(shù),q1是褶皺強(qiáng)度系數(shù),q2是褶皺復(fù)雜性系數(shù)
圖1 隸屬函數(shù)評價因素
5評價因素權(quán)重
評價因素權(quán)重的本質(zhì)是影響采煤技術(shù)的地質(zhì)因素的相對重要性。要確定評價因素權(quán)重應(yīng)采取采礦法為基礎(chǔ),并采取之間的相互適應(yīng)性地質(zhì)條件和開采技術(shù)為主要內(nèi)容,并應(yīng)充分利用統(tǒng)計數(shù)據(jù),研究成果和專家的經(jīng)驗?;谥R的專家,層次分析法是最目前使用的。這種方法更適合于評價和解決具體煤層地質(zhì)條件。表1顯示了通過AHP得到的地質(zhì)因素權(quán)重的層次分析法
6模糊評價模型
6.1優(yōu)化模型的模糊評價
線性加權(quán)綜合評價模型通常用于煤層條件地質(zhì)模糊評價。近年來,優(yōu)化模型提出模糊綜合評價,以減少主觀性的評價。其主要特點在于使用兩個基本點的方法。這就是說,在若干塊評價體系中,有一個相應(yīng)的理想的點良好載體G( G = (g1,g2……gn) )和一個相應(yīng)的反理想點不良載體B( B= (b1,b2……bn) ),假設(shè)該綜合評價值Ri (Ri = (r11, r22, ┄r1m) 是
μi,然后計算廣義距離D(Ri, G) 和 D (Ri, B).。如果考慮所有樣本的平方和加權(quán)距離為最優(yōu)標(biāo)準(zhǔn),最佳的解決方案的綜合評價值是:
6.2特別困難的條件下綜合評價模型
基于上述模糊評價,特殊困難地質(zhì)條件的綜合評價模型,煤層建立困難系數(shù)D。D的更大的價值是比較困難的地質(zhì)開采條件。因為整個評價應(yīng)該體現(xiàn)個人的影響因素。連續(xù)乘法時必須通過結(jié)構(gòu)模型。就是D =1- B× P, 這里B是評估價值的特殊地質(zhì)條件, P是評估價值一般地質(zhì)條件。
圖2評估值之間的關(guān)系和可靠性
7可靠性模糊評價
圖2顯示的特點,可靠性,采礦前評價的基礎(chǔ)上,預(yù)先采礦和在開采的評估和計算可靠性的評價12采礦區(qū)和107個典型的煤煤層區(qū)塊。采礦前評價具有更大的價值,更好的煤層條件,并更高的可靠性。相反,減少采礦前評價是具有最嚴(yán)重的煤層條件和較低的可靠性。不同煤層區(qū)塊信度的評價不同,但是他們總是在整體范圍內(nèi)組成指數(shù)函數(shù)的雙包絡(luò)線R1和R2中。適當(dāng)?shù)闹档腞應(yīng)選擇修改該值的P ',同時評價新區(qū)塊。
8預(yù)測工作面產(chǎn)量
在某些條件下的設(shè)備,技術(shù)和管理的煤礦,采煤工作面產(chǎn)量和地質(zhì)條件之間存在著密切的關(guān)系。
通過模糊評價煤礦地質(zhì)條件和統(tǒng)計分析生產(chǎn)技術(shù)指標(biāo),采煤工作面產(chǎn)量和模糊綜合評價值的關(guān)系之間的都可以建立在一個新的預(yù)測采煤工作面產(chǎn)量模式下。有很多預(yù)測模型的線性方程,對偶二次方程和指數(shù)方程等,例如:
a =C1+ C2 P(綜采開采技術(shù))
a =D(C1+ C2 P + C3 P2)(綜或常規(guī)機(jī)械化采煤技術(shù))
a = D( C1+C2P+C3P2+C4P3)(爆破采煤技術(shù))
a = 24.5(1.13 +1.24 ln P) (在南屯煤礦綜采開采技術(shù))
a = (14.66lnM - 6.77)(1.28+1.4ln P) (東灘礦綜采放頂煤技術(shù))
其中D是困難系數(shù),的C1 , C2 ,C3 ,和C4是統(tǒng)計回歸常數(shù)。
參考文獻(xiàn)
[1] IBTurksen 1991年,隸屬函數(shù)的測量和采集。模糊集與系統(tǒng), 40:36-40 ,北荷蘭。
[2] Knosala與美國Pedrycz 1992年,評價日簽署替代機(jī)械工程,模糊集與系統(tǒng),47:24-28 。
[3] JSDyer & RKSarin , 1979年,衡量多屬性值函數(shù),運(yùn)籌學(xué)。
設(shè)計題目:丁集礦井1.8Mt/a新井設(shè)計
設(shè)計專題題目:煤礦沖擊礦壓
摘 要
本設(shè)計包括三個部分:一般設(shè)計部分、專題設(shè)計部分和翻譯部分。
一般部分針對淮南丁集礦井進(jìn)行了井型為1.8 Mt/a的新井設(shè)計。丁集礦井位于安徽省淮南市境內(nèi),交通較為便利。井田走向長約7.0 km,傾向長約5.5km,面積約48 km2。主采煤層為11-2#煤層,平均傾角5~6°,平均厚度3.49 m。井田工業(yè)儲量為234.9Mt,可采儲量175.6 Mt,礦井服務(wù)年限為75.02 a。礦井正常涌水量為180m3/h,最大涌水量為220m3/h;礦井相對瓦斯涌出量為5.79 m3/t,屬低瓦斯礦井。
根據(jù)井田地質(zhì)條件,設(shè)計采用雙立井單水平開拓方式,井田采用帶區(qū)采區(qū)式布置方式,共劃分為七個帶區(qū)和兩個采區(qū),軌道大巷、膠帶機(jī)大巷皆為巖石大巷,布置在11-2#煤層底板巖層中??紤]到本礦井為低瓦斯礦井,礦井通風(fēng)方式采用兩翼對角式通風(fēng),并在開采前預(yù)掘底板瓦斯抽排巷進(jìn)行瓦斯提前卸壓抽放。
針對東一帶區(qū)采用了帶區(qū)準(zhǔn)備方式,共劃分8個分帶工作面,并進(jìn)行了運(yùn)煤、通風(fēng)、運(yùn)料、排矸、供電系統(tǒng)設(shè)計。
針對11201工作面進(jìn)行了采煤工藝設(shè)計。該工作面煤層平均厚度為3.49 m,平均傾角5°,直接頂為的碳質(zhì)泥巖,老頂為粉砂巖。工作面采用長壁綜采一次采全高采煤法。采用雙滾筒采煤機(jī)割煤,往返一次割兩刀。采用“三八制”工作制度,截深0.8m,每天六個循環(huán),循環(huán)進(jìn)尺4.8m,月推進(jìn)度144 m。
大巷采用膠帶輸送機(jī)運(yùn)煤,輔助運(yùn)輸采用蓄電池式電機(jī)車牽引固定箱式礦車。主井采用兩套帶平衡錘的16t箕斗提煤,副井采用一對1.5 t礦車雙層四車窄罐籠和一個帶平衡錘的1.5 t礦車雙層四車寬罐籠運(yùn)料和升降人員。
專題部分題目是《煤礦沖擊礦壓》,翻譯部分題目為《Fuzzy evaluation on geological conditions of coal seam in China》,主要介紹了現(xiàn)行數(shù)值模擬實驗中巖體特性參數(shù)的選取依據(jù)及在工程現(xiàn)場的應(yīng)用。
關(guān)鍵詞:丁集礦井;雙立井;帶區(qū)布置;綜采大采高;兩翼對角式;軟巖巷道;礦壓觀測
ABSTRACT
This design can be divided into three sections: General design, Monographic study and Translation of an academic paper.
The general design is about a 1.80 Mt/a new underground mine design of Dingji coal mine. Dingji coal mine is located in Huainan, Anhui province, and the traffic is quite convenient. It’s about 7.0 km on the strike and 5.5 km on the dip, with the 48.0 km2 total horizontal area. The minable coal seam is 11-2# with an average thickness of 3.49 m and an average dip of 5°. The proved reserves of this coal mine are 234.9 Mt and the minable reserves are 175.6 Mt, with a mine life of 75.02 a. The normal mine inflow is 180 m3/h and the maximum mine inflow is 220 m3/h. The mine gas emission rate is 5.79 m3/t which can be recognised as low gas mine.
Based on the geological condition of the mine, this design uses a two-shaft single-level development method, Ida-style layout with full band mode, divided into 8 bands total, track roadway, belt conveyor roadway and return airway are all rock roadways, arranged in the floor rock of 11-2# coal seam. Taking into account of the low gas emission, mine ventilation method use two diagonal wings ventilation, and excave bottom gas drainage roadway before mining to relief gas pressure in advance.
Designed first mining district makes use of the method of the band mode preparation, the length of working face is 240 m, which uses fully-mechanized coal caving mining methods. The working system is “three-eight”which produces 330 d/a.
Main roadway makes use of belt conveyor to transport coal resource, and battery locomotive to be assistant transport.
The monographic study entitled "Case Study and Research of Deep Soft Rock Pressure Observation", The title of the translated academic paper is “Fuzzy evaluation on geological conditions of coal seam in China
”.
Keywords:Dingji coal mine;double vertical shaft; band mode; large mining height; two diagonal wings ventilation; soft rock roadway; pressure observation
目 錄
一般部分
1 礦區(qū)概況與井田地質(zhì)特征 1
1.1概況 1
1.1.1地理位置與交通 1
1.1.2地形地貌及水系 1
1.1.3 氣象及地震 1
1.1.4 礦井開發(fā)情況 2
1.2井田地質(zhì)特征 3
1.2.1地層 3
1.2.2構(gòu)造 4
1.2.3 水文地質(zhì)特征 4
1.3煤層 5
1.3.1煤層 5
1.3.2煤質(zhì)、煤類與煤的用途 5
1.4開采技術(shù)條件 6
1.4.1礦井涌水 6
1.4.2煤層頂?shù)装鍘r性特征 8
1.4.3煤層瓦斯 9
1.4.4地?zé)?9
2 井田境界和儲量 11
2.1井田境界 11
2.1.1井田邊界 11
2.2礦井工業(yè)儲量 11
2.2.1礦井儲量計算基礎(chǔ) 11
2.2.2礦井地質(zhì)儲量計算 11
2.2.3礦井工業(yè)儲量計算 11
2.3 礦井可采儲量 12
2.3.1井田邊界煤柱 12
2.3.2工業(yè)廣場煤柱 12
2.3.3斷層保護(hù)煤柱 13
2.3.4大巷保護(hù)煤柱 13
2.3.5礦井可采儲量 13
3 礦井工作制度、設(shè)計生產(chǎn)能力及服務(wù)年限 14
3.1礦井工作制度 14
3.2礦井設(shè)計生產(chǎn)能力及服務(wù)年限 14
3.2.1礦井設(shè)計生產(chǎn)能力確定依據(jù) 14
3.2.2礦井設(shè)計生產(chǎn)能力 14
3.2.3礦井的服務(wù)年限 14
3.2.4井型校核 15
4 井田開拓 16
4.1井田開拓的基本問題 16
4.1.1確定井筒形式、數(shù)目、位置及坐標(biāo) 16
4.1.2主、副井井筒位置的選擇 17
4.1.3工業(yè)廣場的位置、形狀和面積的確定 18
4.1.4開采水平的確定及井田的再劃分 18
4.1.5主要開拓巷道 18
4.1.6井田開拓方案提出與比較 19
4.2 礦井基本巷道 23
4.2.1井筒 23
4.2.2開拓巷道 26
4.2.3井底車場及硐室 28
4.2.3巷道支護(hù) 29
5 準(zhǔn)備方式——帶區(qū)巷道布置 32
5.1煤層地質(zhì)特征 32
5.1.1帶區(qū)位置 32
5.1.2帶區(qū)煤層特征 32
5.1.3煤層頂?shù)装?32
5.1.4水文地質(zhì) 32
5.1.5地質(zhì)構(gòu)造 32
5.1.6煤層瓦斯 32
5.1.7煤塵和自燃 33
5.1.8地表情況 33
5.2 帶區(qū)巷道布置及生產(chǎn)系統(tǒng) 33
5.2.1帶區(qū)準(zhǔn)備方式的確定 33
5.2.2帶區(qū)巷道布置 33
5.2.3帶區(qū)生產(chǎn)系統(tǒng) 34
5.2.4帶區(qū)內(nèi)巷道掘進(jìn)方法 35
5.2.5帶區(qū)生產(chǎn)能力及采出率 35
5.3帶區(qū)車場選型設(shè)計 36
5.3.1帶區(qū)下部車場 36
5.3.2帶區(qū)煤倉 37
5.3.3帶區(qū)變電所 37
6 采煤方法 38
6.1采煤工藝方式 38
6.1.1帶區(qū)煤層特征及地質(zhì)條件 38
6.1.2確定采煤工藝方式 38
6.1.3回采工作面參數(shù)的確定 39
6.1.4回采工作面采煤機(jī)、刮板輸送機(jī)選型 39
6.1.5回采工作面支護(hù)方式 41
6.1.6端頭支護(hù)及超前支護(hù)方式 43
6.1.7各工藝過程注意事項 44
6.1.8回采工作面正規(guī)循環(huán)作業(yè) 45
6.2首采工作面巷道布置 47
6.2.1回采巷道布置方式 47
6.2.2回采巷道參數(shù) 47
7 井下運(yùn)輸 49
7.1概述 49
7.1.1礦井設(shè)計生產(chǎn)能力及工作制度 49
7.1.2運(yùn)輸距離和貨載量 49
7.1.3礦井運(yùn)輸系統(tǒng) 49
7.2帶區(qū)運(yùn)輸設(shè)備選擇 50
7.2.1設(shè)備選型原則 50
7.2.2帶區(qū)運(yùn)輸設(shè)備選型 50
7.2.3帶區(qū)運(yùn)輸設(shè)備能力驗算 52
7.3大巷運(yùn)輸設(shè)備選擇 53
8 礦井提升 55
8.1概述 55
8.2主副井提升 55
8.2.1主井提升 55
8.2.2副井提升 57
9 礦井通風(fēng)及安全 58
9.1礦井通風(fēng)系統(tǒng)的選擇 58
9.1.1礦井通風(fēng)系統(tǒng)的基本要求 58
9.1.2礦井通風(fēng)系統(tǒng)的確定 58
9.1.3采區(qū)通風(fēng)系統(tǒng)的確定 59
9.2礦井風(fēng)量計算 60
9.2.1通風(fēng)容易時期和通風(fēng)困難時期采煤方案的確定 60
9.2.2各用風(fēng)地點的用風(fēng)量和礦井總用風(fēng)量 63
9.2.3風(fēng)量分配及風(fēng)速驗算 66
9.2.4通風(fēng)構(gòu)筑物 67
9.3礦井通風(fēng)阻力計算 67
9.3.1計算原則 67
9.3.2礦井最大阻力路線 68
9.3.3礦井通風(fēng)阻力計算 68
9.4選擇礦井通風(fēng)設(shè)備 72
9.4.1選擇主要通風(fēng)機(jī)的基本原則 72
9.4.2通風(fēng)機(jī)風(fēng)壓的確定 72
9.4.3主要通風(fēng)機(jī)工況點 74
9.4.4 主要通風(fēng)機(jī)的選擇及風(fēng)機(jī)性能曲線 74
9.4.5電動機(jī)選型 77
9.5安全災(zāi)害的預(yù)防措施 77
9.5.1預(yù)防瓦斯和煤塵爆炸的措施 77
9.5.2預(yù)防井下火災(zāi)的措施 78
9.5.3防水措施 78
10 設(shè)計礦井基本技術(shù)經(jīng)濟(jì)指標(biāo) 79
參考文獻(xiàn) 80
專題部分
煤礦沖擊礦壓 81
翻譯部分
FUZZY EVALUATION ON GEOLOGICAL CONDITIONS OF COAL SEAM IN CHINA 98
煤層地質(zhì)條件模糊綜合評價在中國的應(yīng)用 104
致 謝 108
收藏