影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4

上傳人:痛*** 文檔編號(hào):51682271 上傳時(shí)間:2022-01-28 格式:PPT 頁數(shù):18 大?。?74KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4_第1頁
第1頁 / 共18頁
高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4_第2頁
第2頁 / 共18頁
高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 平面向量基本定理課件 新人教A版必修4(18頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、1.三角形法則:三角形法則:2.平行四邊形法則:平行四邊形法則:CBAABCD一一. 向量的加法:向量的加法:首尾相接首尾相接共同起點(diǎn)共同起點(diǎn)ababaabbbab二二. 向量的減法:向量的減法:BADaba共同起點(diǎn)共同起點(diǎn) 指向被減數(shù)指向被減數(shù)溫故知新溫故知新1. 當(dāng)當(dāng) 時(shí):時(shí):02. 當(dāng)當(dāng) 時(shí):時(shí):03. 當(dāng)當(dāng) 時(shí):時(shí):0與與 方向相同。方向相同。ba方向:方向:長度:長度:ba與與 方向相反。方向相反。ba00ba 二、向量共線定理二、向量共線定理: : 向量向量 與非零向量與非零向量 共線共線, ,則則有且只有一個(gè)實(shí)有且只有一個(gè)實(shí)數(shù)數(shù) ,使得:,使得: baba溫故知新溫故知新請(qǐng)大家現(xiàn)

2、在用請(qǐng)大家現(xiàn)在用平行四邊形法則平行四邊形法則作出作出 abbaba21,2創(chuàng)設(shè)情境、提出問題創(chuàng)設(shè)情境、提出問題abba21b21ABCDD1 1e2e OCABMN OCOMON 如圖111OMOAe 1122OCee 1122 +aee 即222ONOBe a數(shù)形結(jié)合數(shù)形結(jié)合 探究規(guī)律探究規(guī)律思考:平面內(nèi)的任一向量思考:平面內(nèi)的任一向量 是否都可以用不共線的向是否都可以用不共線的向量量 表示出來呢?說出你做的步驟。表示出來呢?說出你做的步驟。a21ee 與演示平面向量基本定理 如果 、 是同 一平面內(nèi)的兩個(gè)不共不共線線的向量,那么對(duì)于這一平面內(nèi)的任何向量 ,有且只有有且只有一對(duì)實(shí)數(shù) , ,使

3、1e2ea122211eea數(shù)形結(jié)合數(shù)形結(jié)合 探究規(guī)律探究規(guī)律12e e 這里不共線的向量 、叫做表示這一平面內(nèi)所有向量的一組基底.2、基底 、 必須滿足什么條件?1e2e1、基底 、 是否唯一?1e2e3、定理中 、 的值是否唯一?能為0嗎?12揭示內(nèi)涵、理解真理揭示內(nèi)涵、理解真理演示我們得到:我們得到:(1)(1)基底不唯一;基底不唯一; (2)(2)基底必須不共線;基底必須不共線; (3)(3)如果基底選定,則如果基底選定,則 , 唯一確定唯一確定, ,可以為零可以為零. .12時(shí)時(shí), ,1200a 時(shí)時(shí), , , 與與 共線共線. .120,011aea1e時(shí)時(shí), , , 與與 共線共

4、線. . 120,022ae a2e 特別的:特別的:2211eea平面向量基本定理的應(yīng)用平面向量基本定理的應(yīng)用例1:在 中, , 。ABa ADbABCD 如果 、 分別是 、 的中點(diǎn), 試用 、 分別表示 和 。EFBCDCabBF DEADBCEF(1)(2)若M為AB的中點(diǎn),N在BD上, 3BN=BD,求證:M,N,C三點(diǎn)共線 說明說明: :我們?cè)谧鲇嘘P(guān)向量的題型時(shí)我們?cè)谧鲇嘘P(guān)向量的題型時(shí), ,要先找清楚未知向量和已要先找清楚未知向量和已知向量間的關(guān)系知向量間的關(guān)系, ,認(rèn)真分析未知與已知之間的相關(guān)聯(lián)系認(rèn)真分析未知與已知之間的相關(guān)聯(lián)系, ,從而從而使問題簡化使問題簡化. .MN 1、如

5、圖,已知梯形ABCD,AB/CD,且AB= 2DC,M、N分別是DC、AB的中點(diǎn). 請(qǐng)大家動(dòng)手,從圖中的線段AD、AB、BC、DC、MN對(duì)應(yīng)的向量中確定一組基底,將其它向量用這組基底表示出來.A AN NM MC CD DB B學(xué)以致用學(xué)以致用 1 1、如圖,已知梯形、如圖,已知梯形ABCDABCD,AB/CDAB/CD,且,且AB= 2DC,MAB= 2DC,M、N N分分別是別是DCDC、ABAB的中點(diǎn)的中點(diǎn). .A AN NM MC CD DB B參考答案:參考答案:2e1e12,ABe ADe 解:取解:取 為基底為基底, ,則有則有11;2DCeBCBAADDC 12112eee 1

6、212ee MNMDDAAN 1211142eee 1214ee學(xué)以致用學(xué)以致用學(xué)以致用學(xué)以致用2 2、下列說法中,正確的有:、下列說法中,正確的有: ( ) 1 1)一個(gè)平面內(nèi)只有一對(duì)不共線向量可以作為表示該平)一個(gè)平面內(nèi)只有一對(duì)不共線向量可以作為表示該平面所有向量的基底;面所有向量的基底; 2 2)若)若 3 3)零向量不可以為基底中的向量)零向量不可以為基底中的向量. .2 2、3 30,(021212211則不共線)與eeee的值。三點(diǎn)共線,求實(shí)數(shù)若已知是兩個(gè)不共線的向量,:設(shè)例kDBAeeCDeeCBekeee,2,3,2AB,221212121平面向量基本定理的應(yīng)用平面向量基本定理

7、的應(yīng)用42312413221121,那么如果不共線,且若向量baeebeeaee 本題在解決過程中用到了共線向量基本定理,以及待定系數(shù)法列方程,通過消元解方程組。這些知識(shí)和考慮問題的方法都必須切實(shí)掌握好。學(xué)以致用學(xué)以致用的值。三點(diǎn)共線,求若,是不共線的向量,已知DBAjiCDjiCBjiABji,2,23,. 3.0,ABC,nmlCNBMALnABANmCACMlBCBLABCABCNML求證:時(shí),當(dāng)且上的點(diǎn),的邊分別為如圖所示:若點(diǎn)AMLCBN思考思考 1.平面向量基本定理可以聯(lián)系物理學(xué)中的力的分解模型來理解,它說明在同一平面內(nèi)任一向量都可以表示為不共線向量的線性組合,該定理是平面向量坐標(biāo)

8、表示的基礎(chǔ),其本質(zhì)是一個(gè)向量在其他兩個(gè)向量上的分解。小結(jié)小結(jié) 2.一維:向量的共線定理一維:向量的共線定理 二維:平面向量的基本定理二維:平面向量的基本定理 三維:空間向量的基本定理三維:空間向量的基本定理例例3 3 如右圖如右圖, , 、 不共線,不共線, , ,用用 、 表示表示 . .OA OB ()APtAB tR OA OB OP 分析:求分析:求 ,由圖可知,由圖可知 OP OPOAAP APtAB OAtAB ABOBOA 而而 解:解:APtAB OPOAAP (1) t OAtOB 說明:同上題一樣,我們要找到與未知相關(guān)連的量,來解說明:同上題一樣,我們要找到與未知相關(guān)連的量,來解決問題,避免做無用功!決問題,避免做無用功!OAtAB ()OAt OBOA

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!