《創(chuàng)新設(shè)計(jì)(浙江專用)高考數(shù)學(xué)二輪復(fù)習(xí) 考前增分指導(dǎo)一 技巧——巧解客觀題的10大妙招(二)填空題的解法課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《創(chuàng)新設(shè)計(jì)(浙江專用)高考數(shù)學(xué)二輪復(fù)習(xí) 考前增分指導(dǎo)一 技巧——巧解客觀題的10大妙招(二)填空題的解法課件(33頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(二)填空題的解法填空題是高考試題的第二題型.從歷年的高考成績以及平時(shí)的模擬考試可以看出,填空題得分率一直不是很高.因?yàn)樘羁疹}的結(jié)果必須是數(shù)值準(zhǔn)確、形式規(guī)范、表達(dá)式最簡,稍有毛病,便是零分.因此,解填空題要求在“快速、準(zhǔn)確”上下功夫,由于填空題不需要寫出具體的推理、計(jì)算過程,因此要想“快速”解答填空題,則千萬不可“小題大做”,而要達(dá)到“準(zhǔn)確”,則必須合理靈活地運(yùn)用恰當(dāng)?shù)姆椒ǎ凇扒伞弊稚舷鹿Ψ?填空題的基本特點(diǎn)是:(1)具有考查目標(biāo)集中、跨度大、知識(shí)覆蓋面廣、形式靈活、答案簡短、明確、具體,不需要寫出求解過程而只需要寫出結(jié)論等特點(diǎn);(2)填空題與選擇題有質(zhì)的區(qū)別:填空題沒有備選項(xiàng),因此,解答時(shí)
2、不受誘誤干擾,但同時(shí)也缺乏提示;填空題的結(jié)構(gòu)往往是在正確的命題或斷言中,抽出其中的一些內(nèi)容留下空位,讓考生獨(dú)立填上,考查方法比較靈活;(3)從填寫內(nèi)容看,主要有兩類:一類是定量填寫型,要求考生填寫數(shù)值、數(shù)集或數(shù)量關(guān)系.由于填空題缺少選項(xiàng)的信息,所以高考題中多數(shù)是以定量型問題出現(xiàn);另一類是定性填寫型,要求填寫的是具有某種性質(zhì)的對(duì)象或填寫給定的數(shù)學(xué)對(duì)象的某種性質(zhì),如命題真假的判斷等.方法一直接法對(duì)于計(jì)算型的試題,多通過直接計(jì)算求得結(jié)果,這是解決填空題的基本方法.它是直接從題設(shè)出發(fā),利用有關(guān)性質(zhì)或結(jié)論,通過巧妙地變形,直接得到結(jié)果的方法.要善于透過現(xiàn)象抓本質(zhì),有意識(shí)地采取靈活、簡捷的解法解決問題.探
3、究提高直接法是解決計(jì)算型填空題最常用的方法,在計(jì)算過程中,我們要根據(jù)題目的要求靈活處理,多角度思考問題,注意一些解題規(guī)律和解題技巧的靈活應(yīng)用,將計(jì)算過程簡化從而得到結(jié)果,這是快速準(zhǔn)確地求解填空題的關(guān)鍵.(2)由題意設(shè)P(1)p,的分布列如下方法二特殊值法當(dāng)填空題已知條件中含有某些不確定的量,但填空題的結(jié)論唯一或題設(shè)條件中提供的信息暗示答案是一個(gè)定值時(shí),可以從題中變化的不定量中選取符合條件的恰當(dāng)特殊值(特殊函數(shù)、特殊角、特殊數(shù)列、特殊位置、特殊點(diǎn)、特殊方程、特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論.探究提高求值或比較大小等問題的求解均可利用特殊值代入法,但要注意此種方法僅限于求解結(jié)論只有一種的填
4、空題,對(duì)于開放性的問題或者有多種答案的填空題,則不能使用該種方法求解.答案2方法三圖象分析法對(duì)于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),通過數(shù)形結(jié)合,往往能迅速作出判斷,簡捷地解決問題,得出正確的結(jié)果.韋恩圖、三角函數(shù)線、函數(shù)的圖象及方程的曲線等,都是常用的圖形.探究提高圖解法實(shí)質(zhì)上就是數(shù)形結(jié)合的思想方法在解決填空題中的應(yīng)用,利用圖形的直觀性并結(jié)合所學(xué)知識(shí)便可直接得到相應(yīng)的結(jié)論,這也是高考命題的熱點(diǎn).準(zhǔn)確運(yùn)用此類方法的關(guān)鍵是正確把握各種式子與幾何圖形中的變量之間的對(duì)應(yīng)關(guān)系,利用幾何圖形中的相關(guān)結(jié)論求出結(jié)果.在同一直角坐標(biāo)系中,作出函數(shù)yf(x)與函數(shù)yx的圖象,知它們有3個(gè)交點(diǎn),即函
5、數(shù)g(x)有3個(gè)零點(diǎn).答案3方法四構(gòu)造法構(gòu)造型填空題的求解,需要利用已知條件和結(jié)論的特殊性構(gòu)造出新的數(shù)學(xué)模型,從而簡化推理與計(jì)算過程,使較復(fù)雜的數(shù)學(xué)問題得到簡捷的解決,它來源于對(duì)基礎(chǔ)知識(shí)和基本方法的積累,需要從一般的方法原理中進(jìn)行提煉概括,積極聯(lián)想,橫向類比,從曾經(jīng)遇到過的類似問題中尋找靈感,構(gòu)造出相應(yīng)的函數(shù)、概率、幾何等具體的數(shù)學(xué)模型,使問題快速解決.探究提高構(gòu)造法實(shí)質(zhì)上是化歸與轉(zhuǎn)化思想在解題中的應(yīng)用,需要根據(jù)已知條件和所要解決的問題確定構(gòu)造的方向,通過構(gòu)造新的函數(shù)、不等式或數(shù)列等新的模型,從而轉(zhuǎn)化為自己熟悉的問題.本題巧妙地構(gòu)造出正方體,而球的直徑恰好為正方體的體對(duì)角線,問題很容易得到解決
6、.答案abc方法五綜合分析法對(duì)于開放性的填空題,應(yīng)根據(jù)題設(shè)條件的特征綜合運(yùn)用所學(xué)知識(shí)進(jìn)行觀察、分析,從而得出正確的結(jié)論.【例5】 已知f(x)為定義在R上的偶函數(shù),當(dāng)x0時(shí),有f(x1)f(x),且當(dāng)x0,1)時(shí),f(x)log2(x1),給出下列命題:f(2 013)f(2 014)的值為0;函數(shù)f(x)在定義域上為周期是2的周期函數(shù);直線yx與函數(shù)f(x)的圖象有1個(gè)交點(diǎn); 函數(shù)f(x)的值域?yàn)?1,1).其中正確的命題序號(hào)有_.解析根據(jù)題意,可在同一坐標(biāo)系中畫出直線yx和函數(shù)f(x)的圖象如下:根據(jù)圖象可知f(2 013)f(2 014)0正確,函數(shù)f(x)在定義域上不是周期函數(shù),所以不
7、正確,根據(jù)圖象確實(shí)只有一個(gè)交點(diǎn),所以正確,根據(jù)圖象,函數(shù)f(x)的值域是(1,1),正確.答案探究提高對(duì)于規(guī)律總結(jié)類與綜合型的填空題,應(yīng)從題設(shè)條件出發(fā),通過逐步計(jì)算、分析總結(jié)探究其規(guī)律,對(duì)于多選型的問題更要注重分析推導(dǎo)的過程,以防多選或漏選.做好此類題目要深刻理解題意,捕捉題目中的隱含信息,通過聯(lián)想、歸納、概括、抽象等多種手段獲得結(jié)論.【訓(xùn)練5】 設(shè)aR,若x0時(shí)均有(a1)x1(x2ax1)0,則a_.解析對(duì)a進(jìn)行分類討論,通過構(gòu)造函數(shù),利用數(shù)形結(jié)合解決.(1)當(dāng)a1時(shí),不等式可化為:x0時(shí)均有x2x10,由二次函數(shù)的圖象知,顯然不成立,a1.(2)當(dāng)a0,(a1)x10時(shí)均有x2ax10,二次函數(shù)yx2ax1的圖象開口向上,不等式x2ax10在x(0,)上不能均成立,a1不成立.1.解填空題的一般方法是直接法,除此以外,對(duì)于帶有一般性命題的填空題可采用特例法,和圖形、曲線等有關(guān)的命題可考慮數(shù)形結(jié)合法.解題時(shí),常常需要幾種方法綜合使用,才能迅速得到正確的結(jié)果.2.解填空題不要求求解過程,從而結(jié)論是判斷是否正確的唯一標(biāo)準(zhǔn),因此解填空題時(shí)要注意如下幾個(gè)方面:(1)要認(rèn)真審題,明確要求,思維嚴(yán)謹(jǐn)、周密,計(jì)算有據(jù)、準(zhǔn)確;(2)要盡量利用已知的定理、性質(zhì)及已有的結(jié)論;(3)要重視對(duì)所求結(jié)果的檢驗(yàn).