影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)

上傳人:痛*** 文檔編號(hào):52205029 上傳時(shí)間:2022-02-07 格式:PPT 頁(yè)數(shù):59 大?。?.44MB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)_第1頁(yè)
第1頁(yè) / 共59頁(yè)
高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)_第2頁(yè)
第2頁(yè) / 共59頁(yè)
高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)_第3頁(yè)
第3頁(yè) / 共59頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)第1輪總復(fù)習(xí) 第49講 空間向量的概念及運(yùn)算課件 理 (廣東專(zhuān)版)(59頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 1.了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.掌握空間向量的線(xiàn)性運(yùn)算及其坐標(biāo)表示. 2.掌握空間向量的數(shù)量積及其坐標(biāo)表示,能用向量的數(shù)量積判斷向量的共線(xiàn)與垂直. 1. 空間向量的有關(guān)概念 (1)空間向量:在空間,我們把具有 和 的量叫做向量,其大小叫做向量a的長(zhǎng)度或模,記作|a|. (2)單位向量:長(zhǎng)度或模為_(kāi)的向量 (3)零向量:長(zhǎng)度或模為_(kāi)的向量 (4)相等向量:方向_且模_的向量 大小方向10相同相等(5)相反向量:方向_且模_的向量(6)共線(xiàn)向量:與平面向量一樣,如果表示空間向量的有向線(xiàn)段所在的直線(xiàn)互相平行或重合,則這些向量叫做共線(xiàn)向量或平行向量,a平行于b

2、 b,記作ab b.(7)共面向量:平行于同一_的向量叫做共面向量相反相等平面abpxyab2空間向量中的有關(guān)定理(1)共線(xiàn)向量定理及其推論共線(xiàn)向量定理:空間任意兩個(gè)向量a a,b b(b b=0 0),ab b的充要條件是存在實(shí)數(shù) ,使_.(2)共面向量定理如果兩個(gè)向量a a,b b不共線(xiàn),p p與向量a a,b b共面的充要條件是存在實(shí)數(shù)x,y使_. OD=.1)ABCDxabcpxyzpxOAyOBzOCxyz 空間四點(diǎn) 、 、 、 共面空間任意使空間向量基本定理如果三個(gè)向量 , 不共面,那么對(duì)空間任一向量 ,存在有序數(shù)組 , , ,使得(其中 xxyz空間向量基本定理如果三個(gè)向量 ,

3、,不共面,那么對(duì)空間任一向量 ,存在有序數(shù)組,y,z,使得abcpp = a + b+3c. (4)向量對(duì)實(shí)數(shù)加法的分配律: _ (5)數(shù)乘向量的結(jié)合律:_ . 3向量線(xiàn)性運(yùn)的運(yùn)算律(1)加法交換律:_ (2)加法結(jié)合律:_(3)數(shù)乘分配律:_a+b=b+a(a+b)+c=a+(b+c)(a+b)=a+ba(+)=a+a )aa (OA= ,_0p_.a OBbababababbaabab 作作則則叫叫做做向向量量 與與的的夾夾角角,記記作作 , ,且且規(guī)規(guī)定定 , ,顯顯然然有有 , , ;若若,則則稱(chēng)稱(chēng) 與與 互互相相垂垂直直,記記作作:4空間向量的數(shù)量積及其運(yùn)算律(1)空間向量的夾角及其

4、表示已知兩非零向量 ,b,在空間任取一個(gè)點(diǎn)O, AOB 2ab , a(2)數(shù)量積及坐標(biāo)運(yùn)算(2)已知向量a,b,則_ 叫做a,b的數(shù)量積,記作ab.(3)空間向量數(shù)量積的運(yùn)算律結(jié)合律:_;交換律: _;分配律:_ 。cosa bab , ()()()baa baba bb aabca ba ca b5空間向量的坐標(biāo)表示及應(yīng)用(設(shè)a=(x1,y1,z1),b=(x2,y2,z2)(1)坐標(biāo)運(yùn)算ab= _; a = _; = _; 121212(,)xxyyzz123(,)xyz121212x xy yz z121212222111121212222222111222111222(1)/ /(2

5、)0_(3);(4)cos(5)()()_)_(_2xxyyzzaxyzx xy yz zxyzxyzA xyzB xyzABababababa aab 坐坐標(biāo)標(biāo)應(yīng)應(yīng)用用共共:,;垂垂直直:;模模:夾夾角角: , 距距離離:設(shè)設(shè), , ,則則_.1212120 x xy yz z222212121xxyyzz 一一 空間向量的線(xiàn)性運(yùn)算空間向量的線(xiàn)性運(yùn)算素材素材1 二共線(xiàn)、共面向量定理的運(yùn)用二共線(xiàn)、共面向量定理的運(yùn)用素材素材2 三三 空間向量的數(shù)量積及其應(yīng)用空間向量的數(shù)量積及其應(yīng)用素材素材3 四空間向量的坐標(biāo)運(yùn)算及應(yīng)用四空間向量的坐標(biāo)運(yùn)算及應(yīng)用素材素材4備選例題備選例題 12 3空空間間向向量量

6、的的概概念念及及其其運(yùn)運(yùn)算算是是從從平平面面向向量量中中延延伸伸過(guò)過(guò)來(lái)來(lái)的的,要要通通過(guò)過(guò)類(lèi)類(lèi)比比的的方方法法來(lái)來(lái)掌掌。在在進(jìn)進(jìn)行行空空間間向向量量的的線(xiàn)線(xiàn)性性運(yùn)運(yùn)算算時(shí)時(shí)可可以以沿沿用用平平面面向向量量線(xiàn)線(xiàn)性性運(yùn)運(yùn)算算的的方方法法空空間間向向量量的的基基本本定定理理與與平平面面向向量量的的基基本本定定理理相相比比較較,只只是是多多了了一一維維,在在進(jìn)進(jìn)行行向向量量分分解解時(shí)時(shí),時(shí)時(shí)常常進(jìn)進(jìn)行行三三個(gè)個(gè)方方向向的的分分解解空空間間向向量量坐坐標(biāo)標(biāo)的的加加、減減、數(shù)數(shù)乘乘等等線(xiàn)線(xiàn)性性運(yùn)運(yùn)算算,體體現(xiàn)現(xiàn)了了幾幾個(gè)個(gè)向向量量之之間間的的關(guān)關(guān)系系;通通過(guò)過(guò)坐坐標(biāo)標(biāo)的的線(xiàn)線(xiàn)性性運(yùn)運(yùn)算算還還可可以以計(jì)計(jì)算

7、算空空間間向向量量的的坐坐標(biāo)標(biāo)空空間間向向 4量量的的數(shù)數(shù)乘乘是是判判斷斷兩兩個(gè)個(gè)向向量量共共線(xiàn)線(xiàn)的的依依據(jù)據(jù),常常用用于于證證明明線(xiàn)線(xiàn)線(xiàn)線(xiàn)平平行行、線(xiàn)線(xiàn)面面平平行行、面面面面平平行行問(wèn)問(wèn)題題求求空空間間向向量量的的問(wèn)問(wèn)題題一一般般有有兩兩種種方方法法:一一是是選選擇擇恰恰當(dāng)當(dāng)?shù)牡南蛳蛄苛孔髯鳛闉榛椎子糜没蛳蛄苛勘肀硎臼鞠嘞嚓P(guān)關(guān)向向量量后后進(jìn)進(jìn)行行向向量量運(yùn)運(yùn)算算,再再以以圖圖形形為為指指導(dǎo)導(dǎo)對(duì)對(duì)有有關(guān)關(guān)向向量量進(jìn)進(jìn)行行分分解解;二二是是建建立立空空間間直直角角坐坐標(biāo)標(biāo)系系,利利用用坐坐標(biāo)標(biāo)運(yùn)運(yùn)算算來(lái)來(lái)解解決決空空間間向向量量的的坐坐標(biāo)標(biāo)、空空間間點(diǎn)點(diǎn)的的坐坐標(biāo)標(biāo)是是進(jìn)進(jìn)行行空空間間向

8、向量量運(yùn)運(yùn)算算的的基基礎(chǔ)礎(chǔ)坐坐標(biāo)標(biāo)的的求求法法與與平平面面坐坐標(biāo)標(biāo)的的求求法法相相似似利利用用空空間間向向量量來(lái)來(lái)解解決決立立體體幾幾何何的的問(wèn)問(wèn)題題是是一一個(gè)個(gè)通通法法,應(yīng)應(yīng)加加以以重重視視 cos|5a babab空空間間向向量量的的數(shù)數(shù)量量積積是是運(yùn)運(yùn)用用向向量量的的坐坐標(biāo)標(biāo)求求向向量量的的模模、求求兩兩個(gè)個(gè)向向量量的的夾夾角角、求求線(xiàn)線(xiàn)段段求求線(xiàn)線(xiàn)段段的的長(zhǎng)長(zhǎng)短短、證證明明兩兩個(gè)個(gè)向向量量垂垂直直的的依依據(jù)據(jù),常常用用于于證證明明線(xiàn)線(xiàn)線(xiàn)線(xiàn)垂垂直直、線(xiàn)線(xiàn)面面垂垂直直、面面面面垂垂直直問(wèn)問(wèn)題題以以及及用用公公式式 , 進(jìn)進(jìn)行行線(xiàn)線(xiàn)線(xiàn)線(xiàn)角角的的求求解解,并并利利用用該該公公式式結(jié)結(jié)合合平平面面的的法法向向量量進(jìn)進(jìn)行行線(xiàn)線(xiàn)面面角角、面面面面角角的的求求解解

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!