《(新課標(biāo))天津市2019年高考數(shù)學(xué)二輪復(fù)習(xí) 思想方法訓(xùn)練3 數(shù)形結(jié)合思想 理.doc》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))天津市2019年高考數(shù)學(xué)二輪復(fù)習(xí) 思想方法訓(xùn)練3 數(shù)形結(jié)合思想 理.doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
思想方法訓(xùn)練3 數(shù)形結(jié)合思想
一、能力突破訓(xùn)練
1.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點Z表示復(fù)數(shù)z,則復(fù)數(shù)z1+i對應(yīng)的點位于復(fù)平面內(nèi)的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.方程sinx-π4=14x的實數(shù)解的個數(shù)是( )
A.2 B.3 C.4 D.以上均不對
3.若x∈{x|log2x=2-x},則( )
A.x2>x>1 B.x2>1>x
C.1>x2>x D.x>1>x2
4.若函數(shù)f(x)=(a-x)|x-3a|(a>0)在區(qū)間(-∞,b]上取得最小值3-4a時所對應(yīng)的x的值恰有兩個,則實數(shù)b的值等于( )
A.22 B.2-2或6-32
C.632 D.2+2或6+32
5.已知函數(shù)f(x)=|lgx|,0
10,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( )
A.(1,10) B.(5,6) C.(10,12) D.(20,24)
6.已知函數(shù)f(x)=4x與g(x)=x3+t,若f(x)與g(x)圖象的交點在直線y=x的兩側(cè),則實數(shù)t的取值范圍是( )
A.(-6,0] B.(-6,6) C.(4,+∞) D.(-4,4)
7.“a≤0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
8.在平面直角坐標(biāo)系xOy中,若直線y=2a與函數(shù)y=|x-a|-1的圖象只有一個交點,則a的值為 .
9.函數(shù)f(x)=2sin xsinx+π2-x2的零點個數(shù)為 .
10.若不等式9-x2≤k(x+2)-2的解集為區(qū)間[a,b],且b-a=2,則k= .
11.(2018浙江,15)已知λ∈R,函數(shù)f(x)=x-4,x≥λ,x2-4x+3,x<λ.當(dāng)λ=2時,不等式f(x)<0的解集是 .若函數(shù)f(x)恰有2個零點,則λ的取值范圍是 .
12.已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,0<φ<π2
的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)設(shè)g(x)=fx-π122,求函數(shù)g(x)在x∈-π6,π3上的最大值,并確定此時x的值.
二、思維提升訓(xùn)練
13.已知函數(shù)f(x)=2-|x|,x≤2,(x-2)2,x>2,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=f(x)-g(x)恰有4個零點,則b的取值范圍是( )
A.74,+∞
B.-∞,74
C.0,74
D.74,2
14.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是( )
A.-32e,1
B.-32e,34
C.32e,34
D.32e,1
15.在平面上,過點P作直線l的垂線所得的垂足稱為點P在直線l上的投影,由區(qū)域x-2≤0,x+y≥0,x-3y+4≥0中的點在直線x+y-2=0上的投影構(gòu)成的線段記為AB,則|AB|= ( )
A.22 B.4
C.32 D.6
16.三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
(1)記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是 ;
(2)記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是 .
17.設(shè)函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們的圖象在x=1處的切線互相平行.
(1)求b的值;
(2)若函數(shù)F(x)=f(x),x≤0,g(x),x>0,且方程F(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.
思想方法訓(xùn)練3 數(shù)形結(jié)合思想
一、能力突破訓(xùn)練
1.D 解析 由題圖知,z=2+i,則z1+i=2+i1+i=2+i1+i1-i1-i=32-12i,則對應(yīng)的點位于復(fù)平面內(nèi)的第四象限.故選D.
2.B 解析 在同一坐標(biāo)系內(nèi)作出y=sinx-π4與y=14x的圖象,如圖,可知它們有3個不同的交點.
3.A 解析 設(shè)y1=log2x,y2=2-x,在同一坐標(biāo)系中作出其圖象,如圖,由圖知,交點的橫坐標(biāo)x>1,則有x2>x>1.
4.D 解析 結(jié)合函數(shù)f(x)的圖象(圖略)知,3-4a=-a2,即a=1或a=3.
當(dāng)a=1時,-b2+4b-3=-1(b>3),解得b=2+2;當(dāng)a=3時,-b2+12b-27=-9(b>9),解得b=6+32,故選D.
5.C 解析 作出f(x)的大致圖象.由圖象知,要使f(a)=f(b)=f(c),不妨設(shè)a2,(-2)3+t<-2,解得-60時,f(x)=(-ax+1)x=-ax-1ax,結(jié)合二次函數(shù)的圖象可知f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增;
當(dāng)a>0時,函數(shù)f(x)=|(ax-1)x|的圖象大致如圖.
函數(shù)f(x)在區(qū)間(0,+∞)上有增有減,從而“a≤0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增”的充要條件,故選C.
8.-12 解析
在同一坐標(biāo)系中畫出y=2a和y=|x-a|-1的圖象如圖.由圖可知,要使兩函數(shù)的圖象只有一個交點,則2a=-1,a=-12.
9.2 解析 f(x)=2sin xsinx+π2-x2=2sin xcos x-x2=sin 2x-x2.
如圖,在同一平面直角坐標(biāo)系中作出y=sin 2x與y=x2的圖象,當(dāng)x≥0時,兩圖象有2個交點,當(dāng)x<0時,兩圖象無交點,
綜上,兩圖象有2個交點,即函數(shù)的零點個數(shù)為2.
10.2
解析 令y1=9-x2,y2=k(x+2)-2,在同一個坐標(biāo)系中作出其圖象,如圖.
∵9-x2≤k(x+2)-2的解集為[a,b],且b-a=2,
結(jié)合圖象知b=3,a=1,即直線與圓的交點坐標(biāo)為(1,22),∴k=22+21+2=2.
11.(1,4) (1,3]∪(4,+∞) 解析 當(dāng)λ=2時,f(x)=x-4,x≥2,x2-4x+3,x<2.
當(dāng)x≥2時,f(x)=x-4<0,解得x<4,
∴2≤x<4.
當(dāng)x<2時,f(x)=x2-4x+3<0,解得14.
故λ的取值范圍為(1,3]∪(4,+∞).
12.解 (1)由題圖知A=2,T4=π3,則2πω=4π3,得ω=32.
又f-π6=2sin32-π6+φ
=2sin-π4+φ=0,
∴sinφ-π4=0.
∵0<φ<π2,-π4<φ-π4<π4,
∴φ-π4=0,即φ=π4,
∴f(x)的解析式為f(x)=2sin32x+π4.
(2)由(1)可得fx-π12
=2sin32x-π12+π4
=2sin32x+π8,
g(x)=fx-π122=41-cos3x+π42=2-2cos3x+π4.
∵x∈-π6,π3,∴-π4≤3x+π4≤5π4,
∴當(dāng)3x+π4=π,即x=π4時,g(x)max=4.
二、思維提升訓(xùn)練
13.D 解析 由f(x)=2-|x|,x≤2,(x-2)2,x>2,得f(x)=2+x,x<0,2-x,0≤x≤2,(x-2)2,x>2,
f(2-x)=2+2-x,2-x<0,2-(2-x),0≤2-x≤2,(2-x-2)2,2-x>2=x2,x<0,x,0≤x≤2,4-x,x>2,
所以f(x)+f(2-x)=x2+x+2,x<0,2,0≤x≤2,x2-5x+8,x>2.
因為函數(shù)y=f(x)-g(x)=f(x)+f(2-x)-b恰有4個零點,
所以函數(shù)y=b與y=f(x)+f(2-x)的圖象有4個不同的交點.
畫出函數(shù)y=f(x)+f(2-x)的圖象,如圖.
由圖可知,當(dāng)b∈74,2時,函數(shù)y=b與y=f(x)+f(2-x)的圖象有4個不同的交點.故選D.
14.D 解析 設(shè)g(x)=ex(2x-1),h(x)=a(x-1),則不等式f(x)<0即為g(x)-12時,g(x)>0,函數(shù)g(x)單調(diào)遞增.
所以g(x)的最小值為g-12.
而函數(shù)h(x)=a(x-1)表示經(jīng)過點P(1,0),斜率為a的直線.
如圖,分別作出函數(shù)g(x)=ex(2x-1)與h(x)=a(x-1)的大致圖象.
顯然,當(dāng)a≤0時,滿足不等式g(x)kOC1>kOC3,故p1,p2,p3中最大的是p2.
17.解 函數(shù)g(x)=bx2-ln x的定義域為(0,+∞).
(1)f(x)=3ax2-3a?f(1)=0,g(x)=2bx-1x?g(1)=2b-1,依題意2b-1=0,得b=12.
(2)當(dāng)x∈(0,1)時,g(x)=x-1x<0,當(dāng)x∈(1,+∞)時,g(x)=x-1x>0.
所以當(dāng)x=1時,g(x)取得極小值g(1)=12.
當(dāng)a=0時,方程F(x)=a2不可能有且僅有四個解.
當(dāng)a<0,x∈(-∞,-1)時,f(x)<0,當(dāng)x∈(-1,0)時,f(x)>0,
所以當(dāng)x=-1時,f(x)取得極小值f(-1)=2a,
又f(0)=0,所以F(x)的圖象如圖①所示.
從圖象可以看出F(x)=a2不可能有四個解.
當(dāng)a>0,x∈(-∞,-1)時,f(x)>0,當(dāng)x∈(-1,0)時,f(x)<0,
所以當(dāng)x=-1時,f(x)取得極大值f(-1)=2a.
又f(0)=0,所以F(x)的圖象如圖②所示.
從圖象看出方程F(x)=a2有四個解,則12
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
新課標(biāo)天津市2019年高考數(shù)學(xué)二輪復(fù)習(xí)
思想方法訓(xùn)練3
數(shù)形結(jié)合思想
新課
天津市
2019
年高
數(shù)學(xué)
二輪
復(fù)習(xí)
思想
方法
訓(xùn)練
結(jié)合
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.820124.com/p-5405915.html