共 5 頁 第 0 頁外 文 翻 譯共 5 頁 第 1 頁譯文標(biāo)題 電動(dòng)汽車發(fā)展:過去、現(xiàn)在與未來原文標(biāo)題 Electric Vehicle Development: The Past, Present Gasoline vehicle took over as the leader and surpass electric vehicle both in performance and cost. Infrastructure improvement and demand of inter-city travel required a longer travel distance that was never able to exploit by electric vehicle before. Lacking of charge infrastructure development, reliable electricity transmission and limited travel distance, electric vehicle no longer suited for consumer demand and lost the edge to regular gasoline vehicle. Limited or no electrical infrastructure support forced the resignation and abundance of earlier electric vehicle.Widely discovery of gasoline in the sate and ready availability of cheap fuel also contributed the spread of gasoline vehicle. Petrol in the 1930s provided a direct cheap source of energy for vehicle transportation. It could be carried around by container which enabled and extended the mobility of owning a vehicle.B. Midterm development (1930s-1980s)Electric vehicle production and development came to a halt as personal transportation after combustion engine took over in 1935. Political sensitivity with OPEC created a necessity of energy independence during the 1960s and 1970s. U.S Government and environmentalist reintroduced tougher fuel efficient standard for the industry and ignited a board interest in electric vehicle in the period. Energy crisis in early 70s driven the US postal service placed a large order of 350 EV test fleet. It is the highest node of midterm development. However, partly due to limited performance, other governmental priorities, lack of board infrastructure support and range of corporation participation, the development quiet down quickly during this period.C. Modern DevelopmentModern EV development was dominated by EV1 who produced by GM for fleet application. Following a program funded by Department of Energy, Ford developed EV Ranger pick up truck, Toyota provided Rav4 EV and Honda had an EV available as well during late 1990s and early 2000s. Unfortunately, this short surge of EV availability did not realized into commercial production because of a complicated issue of politics, economic, education and technology that includes vehicle production cost and safety concerns. EV1, Ranger, Rav4 and Honda EV were intended for fleet test only, almost all the vehicles has been discontinued, destroyed and recycled. Only a handful of electric 共 5 頁 第 7 頁vehicles were survived under the hands of EV enthusiasts.D. Modern HEV developmentHowever, in 1999 and early 2000s, a new type of electric vehicle emerged from pure electric vehicle. Honda introduced the first HEV, Honda Insight, to the US Market that brought another milestone in auto industry. With brisk market acceptance and success of the Prius, HEV technology shows it maturity and potential. Ford introduced the first American hybrid electric vehicle, Escape SUV HEV, during the ‘Manhattan on a Tank’ event and registered 600 miles/tank in congestive city traffic that opened a new era of competition in US among HEVs. By year of 2008, the HEV sales were more than 2.5% for total sales volume. In deep, the next generation of HEV from Toyota, Honda and Ford has introduced into 2009 with further refinement along updated technology. Fuel efficiency has improved as well.Toyota is the clear leader in the HEV arena base on volume and range of models with it “synergy drive system”. Honda and Ford are right behind with their offering in full hybrids. GM offers its “two mode” technology in hybrid passenger cars and trucks as well.E. Future DevelopmentAs gasoline price rise rapidly, combined with environmental concern, the society renews the call for social responsibility. Electric Vehicle and other AFV suddenly becomes popular again.With announcement of the Chevy Volt plug-in concept couple years ago and pure electric vehicle from Nissan, a new round of EV development has resurrected into OEM’s cycle plan in the up coming years. The fruit of this EV trend will be seen in the next three years.Comparing to previous electric vehicle development, there are a few factors that will ensure this initiation be successful in the future:Vehicle operators are the direct target customers of developing EV. Market driven approach always creates competitive and attractive products at reasonable cost and performance.Early technology and environmental adopter will the initial leaders and users. They are willing to support and has the capability to influence the success. Also various education programs and EV initiatives transform general understanding of fuel efficient vehicles and their benefits. Warm acceptance of electric vehicle is high in the coming years.Cooperation in charge station and infrastructure development has gained attention at different level. Various business models are being explored. The industry and government are confident that final plan will reach prior to the mass launch of electric vehicle.Energy storage technology improvement makes lithium battery application became safe in vehicle. Sophistication of system management upgrades and improves electric vehicle to a comparable level of combustion engine. Lastly, proper government policy provides a development foundation for the industry. Special tax incentives and subsidy will offset consumer burden for purchasing electric vehicle. It is a confident vote for the product when government is willing to provide financial and strategic support.III. CONCLUSIONLike many emerging technology, electric vehicle development and application have been around for a long time, but until recently, the technology has not really taken off. 共 5 頁 第 8 頁Even though HEV started as a good alternative to gasoline vehicle and well publicized by the media, but it only represented as the intermediate step or near term solution. Government regulation and environmental prospect, in particular will drive the adoption of transportation electrification. Electric vehicle will be the final goal. In fact, as OEM introduce more EV model to the end consumer by 2012, the presents of electric vehicle will be widely seen and recognized. Along with new electric vehicle development on the way, it will also introduce tremendous opportunity in associated technology especially in Power electronics. We shall utilize this opportunity and contribute to the green trend.共 5 頁 第 9 頁指 導(dǎo) 教 師 評(píng) 語外文翻譯成績(jī):指導(dǎo)教師簽字:年 月 日注:1. 指導(dǎo)教師對(duì)譯文進(jìn)行評(píng)閱時(shí)應(yīng)注意以下幾個(gè)方面:①翻譯的外文文獻(xiàn)與畢業(yè)設(shè)計(jì)(論文)的主題是否高度相關(guān),并作為外文參考文獻(xiàn)列入畢業(yè)設(shè)計(jì)(論文)的參考文獻(xiàn);②翻譯的外文文獻(xiàn)字?jǐn)?shù)共 5 頁 第 10 頁是否達(dá)到規(guī)定數(shù)量(3 000 字以上) ;③譯文語言是否準(zhǔn)確、通順、具有參考價(jià)值。2. 外文原文應(yīng)以附件的方式置于譯文之后。共 5 頁 第 0 頁外 文 翻 譯共 5 頁 第 1 頁譯文標(biāo)題 電動(dòng)汽車發(fā)展:過去、現(xiàn)在與未來原文標(biāo)題 Electric Vehicle Development: The Past, Present Gasoline vehicle took over as the leader and surpass electric vehicle both in performance and cost. Infrastructure improvement and demand of inter-city travel required a longer travel distance that was never able to exploit by electric vehicle before. Lacking of charge infrastructure development, reliable electricity transmission and limited travel distance, electric vehicle no longer suited for consumer demand and lost the edge to regular gasoline vehicle. Limited or no electrical infrastructure support forced the resignation and abundance of earlier electric vehicle.Widely discovery of gasoline in the sate and ready availability of cheap fuel also contributed the spread of gasoline vehicle. Petrol in the 1930s provided a direct cheap source of energy for vehicle transportation. It could be carried around by container which enabled and extended the mobility of owning a vehicle.B. Midterm development (1930s-1980s)Electric vehicle production and development came to a halt as personal transportation after combustion engine took over in 1935. Political sensitivity with OPEC created a necessity of energy independence during the 1960s and 1970s. U.S Government and environmentalist reintroduced tougher fuel efficient standard for the industry and ignited a board interest in electric vehicle in the period. Energy crisis in early 70s driven the US postal service placed a large order of 350 EV test fleet. It is the highest node of midterm development. However, partly due to limited performance, other governmental priorities, lack of board infrastructure support and range of corporation participation, the development quiet down quickly during this period.C. Modern DevelopmentModern EV development was dominated by EV1 who produced by GM for fleet application. Following a program funded by Department of Energy, Ford developed EV Ranger pick up truck, Toyota provided Rav4 EV and Honda had an EV available as well during late 1990s and early 2000s. Unfortunately, this short surge of EV availability did not realized into commercial production because of a complicated issue of politics, economic, education and technology that includes vehicle production cost and safety concerns. EV1, Ranger, Rav4 and Honda EV were intended for fleet test only, almost all the vehicles has been discontinued, destroyed and recycled. Only a handful of electric 共 5 頁 第 7 頁vehicles were survived under the hands of EV enthusiasts.D. Modern HEV developmentHowever, in 1999 and early 2000s, a new type of electric vehicle emerged from pure electric vehicle. Honda introduced the first HEV, Honda Insight, to the US Market that brought another milestone in auto industry. With brisk market acceptance and success of the Prius, HEV technology shows it maturity and potential. Ford introduced the first American hybrid electric vehicle, Escape SUV HEV, during the ‘Manhattan on a Tank’ event and registered 600 miles/tank in congestive city traffic that opened a new era of competition in US among HEVs. By year of 2008, the HEV sales were more than 2.5% for total sales volume. In deep, the next generation of HEV from Toyota, Honda and Ford has introduced into 2009 with further refinement along updated technology. Fuel efficiency has improved as well.Toyota is the clear leader in the HEV arena base on volume and range of models with it “synergy drive system”. Honda and Ford are right behind with their offering in full hybrids. GM offers its “two mode” technology in hybrid passenger cars and trucks as well.E. Future DevelopmentAs gasoline price rise rapidly, combined with environmental concern, the society renews the call for social responsibility. Electric Vehicle and other AFV suddenly becomes popular again.With announcement of the Chevy Volt plug-in concept couple years ago and pure electric vehicle from Nissan, a new round of EV development has resurrected into OEM’s cycle plan in the up coming years. The fruit of this EV trend will be seen in the next three years.Comparing to previous electric vehicle development, there are a few factors that will ensure this initiation be successful in the future:Vehicle operators are the direct target customers of developing EV. Market driven approach always creates competitive and attractive products at reasonable cost and performance.Early technology and environmental adopter will the initial leaders and users. They are willing to support and has the capability to influence the success. Also various education programs and EV initiatives transform general understanding of fuel efficient vehicles and their benefits. Warm acceptance of electric vehicle is high in the coming years.Cooperation in charge station and infrastructure development has gained attention at different level. Various business models are being explored. The industry and government are confident that final plan will reach prior to the mass launch of electric vehicle.Energy storage technology improvement makes lithium battery application became safe in vehicle. Sophistication of system management upgrades and improves electric vehicle to a comparable level of combustion engine. Lastly, proper government policy provides a development foundation for the industry. Special tax incentives and subsidy will offset consumer burden for purchasing electric vehicle. It is a confident vote for the product when government is willing to provide financial and strategic support.III. CONCLUSIONLike many emerging technology, electric vehicle development and application have been around for a long time, but until recently, the technology has not really taken off. 共 5 頁 第 8 頁Even though HEV started as a good alternative to gasoline vehicle and well publicized by the media, but it only represented as the intermediate step or near term solution. Government regulation and environmental prospect, in particular will drive the adoption of transportation electrification. Electric vehicle will be the final goal. In fact, as OEM introduce more EV model to the end consumer by 2012, the presents of electric vehicle will be widely seen and recognized. Along with new electric vehicle development on the way, it will also introduce tremendous opportunity in associated technology especially in Power electronics. We shall utilize this opportunity and contribute to the green trend.共 5 頁 第 9 頁指 導(dǎo) 教 師 評(píng) 語外文翻譯成績(jī):指導(dǎo)教師簽字:年 月 日注:1. 指導(dǎo)教師對(duì)譯文進(jìn)行評(píng)閱時(shí)應(yīng)注意以下幾個(gè)方面:①翻譯的外文文獻(xiàn)與畢業(yè)設(shè)計(jì)(論文)的主題是否高度相關(guān),并作為外文參考文獻(xiàn)列入畢業(yè)設(shè)計(jì)(論文)的參考文獻(xiàn);②翻譯的外文文獻(xiàn)字?jǐn)?shù)共 5 頁 第 10 頁是否達(dá)到規(guī)定數(shù)量(3 000 字以上) ;③譯文語言是否準(zhǔn)確、通順、具有參考價(jià)值。2. 外文原文應(yīng)以附件的方式置于譯文之后。— 0 —開題報(bào)告學(xué)生姓名 專 業(yè) 班 級(jí)指導(dǎo)教師姓名 職 稱 工作單位課題來源 課題性質(zhì)課題名稱 純電動(dòng)汽車傳動(dòng)系統(tǒng)結(jié)構(gòu)設(shè)計(jì)本設(shè)計(jì)的科學(xué)依據(jù)(科學(xué)意義和應(yīng)用前景,國內(nèi)外研究概況,目前技術(shù)現(xiàn)狀、水平和發(fā)展趨勢(shì)等)1.科學(xué)意義及應(yīng)用前景幾十年來,隨著傳統(tǒng)汽車產(chǎn)業(yè)的不斷發(fā)展壯大,世界各國均面臨能源和環(huán)境危機(jī)的嚴(yán)峻挑戰(zhàn)。純電動(dòng)汽車的出現(xiàn)能有效解決能源和環(huán)境這兩大危機(jī)。另外,純電動(dòng)汽車的運(yùn)行平穩(wěn)、低噪聲、零部件布置靈活多樣化、維修方便、能量利用率高等優(yōu)點(diǎn)。電動(dòng)車作為解決環(huán)境污染的重要可行途徑, 得到快速發(fā)展。2.國內(nèi)外研究概況國內(nèi)現(xiàn)今電動(dòng)汽車主要是改裝設(shè)計(jì)的。在上世紀(jì) 60 年代,我國就開始了純電動(dòng)汽車的研發(fā)工作,于上世紀(jì) 90 年代掀起了一股研發(fā)熱潮,部分相關(guān)高校、科研院所以及汽車企業(yè)聯(lián)合開發(fā)充電電池和純電動(dòng)汽車,相繼研制出電動(dòng)汽車功能樣車、性能樣車和產(chǎn)品樣車,并開始著力推廣其示范運(yùn)行。國外電動(dòng)汽車設(shè)計(jì)主要有以下兩種方法:改裝設(shè)計(jì)和全新設(shè)計(jì)改裝設(shè)計(jì):選擇一輛與目標(biāo)設(shè)汁的電動(dòng)汽車在載客量和載質(zhì)量方面都近似的傳統(tǒng)汽車來進(jìn)行改裝。移除內(nèi)燃機(jī),換成電機(jī)。充分利用車架上部和下部以及原油箱和座椅下的一些空間來安放電池。為盡量擴(kuò)大車廂內(nèi)的有一效空間。全新設(shè)計(jì):國外電動(dòng)車發(fā)展比較早,新研制的電動(dòng)汽車大部分是采用全新設(shè)計(jì)。即采用新的外形,新的造型、底盤設(shè)計(jì)用于減小風(fēng)阻,提高續(xù)時(shí)里程。對(duì)車身、底盤和電池采取輕量化措施減輕車身質(zhì)量。用間接驅(qū)動(dòng)式或直接驅(qū)動(dòng)式或電動(dòng)輪式驅(qū)動(dòng)。再用仿真軟件進(jìn)行仿真修改。3.目前技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)萬向電動(dòng)汽車有限公司自 2002 年成立以來,在高能量聚合物鋰離子動(dòng)力電池、一體化電動(dòng)機(jī)及其驅(qū)動(dòng)控制系統(tǒng)等方面取得了相應(yīng)的成果,成為動(dòng)力電池產(chǎn)業(yè)化制造基地和“十一五”純電動(dòng)汽車平臺(tái)牽頭單位。天津清源電動(dòng)車輛有限公司等單位研發(fā)的純電動(dòng)轎車,— 1 —其整車的動(dòng)力性、經(jīng)濟(jì)型、續(xù)駛里程、噪聲等指標(biāo)已超過法國雪鐵龍的純電動(dòng)轎車和箱式貨車,初步形成了關(guān)鍵技術(shù)的研發(fā)能力。北京理工大學(xué)等單位聯(lián)合組建了北京理工科凌電動(dòng)車輛股份有限公司密云電動(dòng)車輛產(chǎn)業(yè)化生產(chǎn)基地,并于 2003 年底順利通過北京市公共交通總公司組織的示范運(yùn)行車組驗(yàn)收,小批量研發(fā)生產(chǎn)的四種車型約 40 輛公交車投放了北京市奧運(yùn)電動(dòng)車示范車隊(duì)運(yùn)行。設(shè)計(jì)內(nèi)容和預(yù)期成果(具體設(shè)計(jì)內(nèi)容和重點(diǎn)解決的技術(shù)問題、預(yù)期成果和提供的形式)一、 設(shè)計(jì)內(nèi)容和重點(diǎn)解決的技術(shù)問題1.確定驅(qū)動(dòng)方式2.設(shè)計(jì)齒輪3.確定變速器及制動(dòng)器形式二、 預(yù)期成果和提供的形式1.制定傳動(dòng)系統(tǒng)結(jié)構(gòu)總體方案;2.總體結(jié)構(gòu)裝配圖;3.制定關(guān)鍵部位的優(yōu)化設(shè)計(jì)方案;4.撰寫畢業(yè)設(shè)計(jì)說明書。擬采取設(shè)計(jì)方法和技術(shù)支持(設(shè)計(jì)方案、技術(shù)要求、實(shí)驗(yàn)方法和步驟、可能遇到的問題和解決辦法等)1.純電動(dòng)汽車傳動(dòng)系統(tǒng)結(jié)構(gòu)設(shè)計(jì)方法:在純電動(dòng)汽車傳動(dòng)系統(tǒng)結(jié)構(gòu)設(shè)計(jì)過程中,首先需掌握相關(guān)仿真軟件,具備汽車原理、汽車設(shè)計(jì)及機(jī)械制圖等專業(yè)基礎(chǔ)知識(shí),然后采用電動(dòng)汽車仿真軟件 ADVISOR 建立整車動(dòng)力傳動(dòng)系統(tǒng)的 Simulink仿真模型。2.工作環(huán)境及技術(shù)條件:需要用 PC 機(jī)進(jìn)行機(jī)械工程圖的繪制,可以充分利用系里的CAD/CAM 實(shí)驗(yàn)室進(jìn)行設(shè)計(jì)工作。設(shè)計(jì)相關(guān)的各種手冊(cè)和資料和從學(xué)校圖書館借閱;另外可以充分利用學(xué)校的數(shù)字圖書資源,查閱中、英文文獻(xiàn)。— 2 —實(shí)現(xiàn)本項(xiàng)目預(yù)期目標(biāo)和已具備的條件(包括過去學(xué)習(xí)、研究工作基礎(chǔ),現(xiàn)有主要儀器設(shè)備、設(shè)計(jì)環(huán)境及協(xié)作條件等)1、完成傳動(dòng)系統(tǒng)的初步掌握,已學(xué)習(xí)完汽車設(shè)計(jì)課程,已具有一定的專業(yè)基礎(chǔ)知識(shí);2、掌握純電動(dòng)汽車傳動(dòng)系統(tǒng)的設(shè)計(jì),需具有機(jī)械制圖和汽車設(shè)計(jì)的相關(guān)知識(shí),已學(xué)習(xí)過汽車?yán)碚?、汽車設(shè)計(jì)等多門課程,為設(shè)計(jì)工作打下了良好的基礎(chǔ)。3、已掌握相關(guān)仿真軟件,且熟悉 ADVISOR 軟件的運(yùn)用,可對(duì)傳動(dòng)系統(tǒng)進(jìn)行仿真,為制定優(yōu)化設(shè)計(jì)方案提供依據(jù)。4、我院已具備 CAD/CAM 實(shí)驗(yàn)室,圖書館,數(shù)字圖書館等硬件設(shè)施。各環(huán)節(jié)擬定階段性工作進(jìn)度(以周為單位)1.準(zhǔn)備開題報(bào)告:3 周2.純電動(dòng)汽車傳動(dòng)系統(tǒng)結(jié)構(gòu)設(shè)計(jì):8 周4. 撰寫畢業(yè)設(shè)計(jì)說明及準(zhǔn)備答辯:2 周開 題 報(bào) 告 審 定 紀(jì) 要時(shí) 間 地點(diǎn) 主持人姓 名 職 務(wù)(職 稱) 姓 名 職 務(wù)(職 稱)參會(huì)教師— 3 —論證情況摘要記錄人:指導(dǎo)教師意見指導(dǎo)教師簽名: 年 月 日教研室意見 教研室主任簽名: 年 月 日