《重慶市巴南區(qū)石龍初級中學(xué)九年級數(shù)學(xué)《 二次函數(shù)的圖像和性質(zhì)》課件》由會員分享,可在線閱讀,更多相關(guān)《重慶市巴南區(qū)石龍初級中學(xué)九年級數(shù)學(xué)《 二次函數(shù)的圖像和性質(zhì)》課件(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、26.1.2 26.1.2 二次函數(shù)的圖像和性質(zhì)二次函數(shù)的圖像和性質(zhì)f x( ) = xxf x( ) = xxf x( ) = xxx xy=xy=x2 2+2+2-2-20 01 1-1-12 2y=xy=x2 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)y=xy=x2 2-2-21.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例4. .畫出函數(shù)畫出函數(shù)y=xy=x2 2、y=xy=x2 2+2+2、y=xy=x2 2-2-2的圖象:的圖象:y=xy=x2 2+2+2y=xy=x2 2y=xy=x2 2-2-21.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例5. .畫出函數(shù)畫出函數(shù)y=
2、- xy=- x2 2、y=- xy=- x2 2+3+3、y=- xy=- x2 2-3-3的圖象:的圖象:1 12 21 12 21 12 2x x-3-30 02 2-2-23 3頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)y=- xy=- x2 2-3-31 12 2y=- xy=- x2 21 12 2y=- xy=- x2 2+3+31 12 2形如形如y=axy=ax2 2+n+n這樣的二次函數(shù),這樣的二次函數(shù),( (這與這與y=ax2+c不是一個(gè)意義,不是一個(gè)意義,n不是不是c)當(dāng)當(dāng)n n0 0時(shí),時(shí),圖象是函數(shù)圖象是函數(shù)y=axy=ax2 2圖圖象向上平移象向上平移|n|n|個(gè)單位;個(gè)單位;當(dāng)當(dāng)n n0
3、 0時(shí),圖象是函數(shù)時(shí),圖象是函數(shù)y=axy=ax2 2圖圖象向下平移象向下平移|n|n|個(gè)單位;個(gè)單位;y=- xy=- x2 2-3-31 12 2y=- xy=- x2 21 12 2y=- xy=- x2 2+3+31 12 2形如形如y=axy=ax2 2+n+n這樣的二次函數(shù),這樣的二次函數(shù),( (這與這與y=ax2+c不是一個(gè)意義,不是一個(gè)意義,n不是不是c)頂點(diǎn)坐標(biāo)為(頂點(diǎn)坐標(biāo)為(0 0,n n)f x( ) = xxf x( ) = xxf x( ) = xx1.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例6. .畫出函數(shù)畫出函數(shù)y=xy=x2 2、y=(x+2
4、)y=(x+2)2 2、y=(x-2)y=(x-2)2 2的圖象:的圖象:x xy=(x+2)y=(x+2)2 2-2-20 01 1-1-12 2y=xy=x2 2-4-44 4y=(x-2)y=(x-2)2 23 3-3-3y=(x+2)y=(x+2)2 2y=xy=x2 2y=(x-2)y=(x-2)2 21.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例7. .畫出函數(shù)畫出函數(shù)y=-2xy=-2x2 2、y=-2(x+1)y=-2(x+1)2 2、y=-2(x-1)y=-2(x-1)2 2的圖象:的圖象:x xy=-2(x+1)y=-2(x+1)2 2-2-20 01 1
5、-1-12 2y=-2xy=-2x2 2-4-44 4y=-2(x-1)y=-2(x-1)2 23 3-3-3y=-2(x+1)y=-2(x+1)2 2y=-2xy=-2x2 2y=-2(x-1)y=-2(x-1)2 2形如形如y=a(x+m)y=a(x+m)2 2這樣的二次這樣的二次函數(shù),函數(shù),當(dāng)當(dāng)m m0 0時(shí),時(shí),圖象是函數(shù)圖象是函數(shù)y=axy=ax2 2圖象向左平移圖象向左平移|m|m|個(gè)個(gè)單位;單位;當(dāng)當(dāng)m m0 0時(shí),圖象是函數(shù)時(shí),圖象是函數(shù)y=axy=ax2 2圖象向右平移圖象向右平移|m|m|個(gè)個(gè)單位;單位;形如形如y=a(x+m)y=a(x+m)2 2這樣的二次函這樣的二次函
6、數(shù),數(shù),頂點(diǎn)坐標(biāo)為(頂點(diǎn)坐標(biāo)為(-m-m,0 0)對稱軸為對稱軸為x=-mx=-m1.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例8. .畫出函數(shù)畫出函數(shù)y=(x+3)y=(x+3)2 2+2+2的圖象:的圖象:-2-20 01 1-1-12 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)x xy=(x+3)y=(x+3)2 2+2+2y=xy=x2 2x x頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)f x( ) = xxf x( ) = xxf x( ) = xxy=(x+3)y=(x+3)2 2y=xy=x2 2y=(x+3)y=(x+3)2 2+2+2f x( ) = xx1.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線
7、:連線:例例9. .畫出函數(shù)畫出函數(shù)y=(x+3)y=(x+3)2 2+2+2的圖象:的圖象:-2-20 01 1-1-12 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)x xy=(x+3)y=(x+3)2 2+2+2y=xy=x2 2x x頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)f x( ) = xxf x( ) = xxy=xy=x2 2+2+2y=xy=x2 2y=(x+3)y=(x+3)2 2+2+21.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例10. .畫出函數(shù)畫出函數(shù)y=-2(x-1)y=-2(x-1)2 2+3+3的圖象:的圖象:-2-20 01 1-1-12 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)x xy=-2(x-1)y=-2
8、(x-1)2 2+3+3y=-2xy=-2x2 2x x頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)y=-2(x-1)y=-2(x-1)2 2y=-2xy=-2x2 2y=-2(x-1)y=-2(x-1)2 2+3+31.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例11. .畫出函數(shù)畫出函數(shù)y=-2(x-1)y=-2(x-1)2 2+3+3的圖象:的圖象:-2-20 01 1-1-12 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)x xy=-2(x-1)y=-2(x-1)2 2+3+3y=-2xy=-2x2 2x x頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)y=-2xy=-2x2 2+3+3y=-2xy=-2x2 2y=-2(x-1)y=-2(x-1)2
9、2+3+3形如形如y=a(x+m)y=a(x+m)2 2+n+n這樣的二次這樣的二次函數(shù),函數(shù),a a決定拋物線的開口和形狀決定拋物線的開口和形狀m m決定圖像上下平移決定圖像上下平移n n決定圖像左右平移決定圖像左右平移形如形如y=a(x+m)y=a(x+m)2 2+n+n這樣的二次這樣的二次函數(shù),函數(shù),頂點(diǎn)坐標(biāo)為(頂點(diǎn)坐標(biāo)為(-m-m,n n)對稱軸為對稱軸為x=-mx=-m解析式解析式分情況討論分情況討論變換過程變換過程頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)對稱軸對稱軸形如:形如:y=a(x+m)y=a(x+m)2 2+n+n(a a、m m、n n都是常數(shù),都是常數(shù),a a0 0)m m0,n0,n0 0m
10、 m0,n0,n0 0m m0,n0,n0 0m m0,n0,n0 0由由y=axy=ax2 2向左平移向左平移|m|m|個(gè)單位,個(gè)單位,向上平移向上平移|n|n|個(gè)單位。個(gè)單位。由由y=axy=ax2 2向左平移向左平移|m|m|個(gè)單位,個(gè)單位,向下平移向下平移|n|n|個(gè)單位。個(gè)單位。由由y=axy=ax2 2向右平移向右平移|m|m|個(gè)單位,個(gè)單位,向上平移向上平移|n|n|個(gè)單位。個(gè)單位。由由y=axy=ax2 2向右平移向右平移|m|m|個(gè)單位,個(gè)單位,向下平移向下平移|n|n|個(gè)單位。個(gè)單位。(-m,n(-m,n) )(-m,n(-m,n) )(-m,n(-m,n) )(-m,n(
11、-m,n) )x=-mx=-mx=-mx=-mx=-mx=-mx=-mx=-m1.1.列表:列表:2.2.描點(diǎn):描點(diǎn):3.3.連線:連線:例例10. .畫出函數(shù)畫出函數(shù)y=2xy=2x2 2-12x+16-12x+16的圖象:的圖象:-2-20 01 1-1-12 2頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)x xy=2(x-3)y=2(x-3)2 2-2-2y=2xy=2x2 2x x頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)y=2(x-3)y=2(x-3)2 2-2-2y=2(x-3)y=2(x-3)2 2y=2xy=2x2 2y=2(x-3)y=2(x-3)2 2-2-2y=2xy=2x2 2-12x+16-12x+16解析式變形解析式變
12、形分情況討論分情況討論變換過程變換過程y=axy=ax2 2+bx+c+bx+c(a a、b b、c c都是常數(shù),都是常數(shù),a a0 0)y=a(xy=a(x+ )+ )2 2+ +b b2a2a4ac-b4ac-b2 24a4a解析式解析式0 0b b2a2a4ac-b4ac-b2 24a4a0 00 0b b2a2a4ac-b4ac-b2 24a4a0 00 0b b2a2a4ac-b4ac-b2 24a4a0 00 0b b2a2a4ac-b4ac-b2 24a4a0 0由由y=axy=ax2 2向左平移向左平移| | |個(gè)單個(gè)單位,位,向上平移向上平移| | |個(gè)單位。個(gè)單位。4ac-
13、b4ac-b2 24a4ab b2a2a由由y=axy=ax2 2向左平移向左平移| | |個(gè)單個(gè)單位,位,向下平移向下平移| | |個(gè)單位。個(gè)單位。4ac-b4ac-b2 24a4ab b2a2a由由y=axy=ax2 2向右平移向右平移| | |個(gè)單個(gè)單位,位,向上平移向上平移| | |個(gè)單位。個(gè)單位。4ac-b4ac-b2 24a4ab b2a2a由由y=axy=ax2 2向右平移向右平移| | |個(gè)單個(gè)單位,位,向下平移向下平移| | |個(gè)單位。個(gè)單位。4ac-b4ac-b2 24a4ab b2a2a頂點(diǎn)坐標(biāo)頂點(diǎn)坐標(biāo)對稱軸對稱軸(- - , )b b2a2a4ac-b4ac-b2 24a4a都是都是x=-x=-b b2a2a都是都是