2019年高考數(shù)學(xué)總復(fù)習(xí) 9.2 不等式選講課件 理.ppt
《2019年高考數(shù)學(xué)總復(fù)習(xí) 9.2 不等式選講課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)總復(fù)習(xí) 9.2 不等式選講課件 理.ppt(31頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
9 2不等式選講 選修4 5 1 絕對(duì)值三角不等式 1 定理1 若a b是實(shí)數(shù) 則 a b a b 當(dāng)且僅當(dāng)ab 0時(shí) 等號(hào)成立 2 性質(zhì) a b a b a b 3 定理2 若a b c是實(shí)數(shù) 則 a c a b b c 當(dāng)且僅當(dāng) a b b c 0時(shí) 等號(hào)成立 2 絕對(duì)值不等式的解法 1 含絕對(duì)值的不等式 x a a 0 的解法 x a x a或x0 和 ax b c c 0 型不等式的解法 ax b c c ax b c ax b c ax b c或ax b c 3 x a x b c c 0 和 x a x b c c 0 型不等式的解法 利用絕對(duì)值不等式的幾何意義求解 體現(xiàn)了數(shù)形結(jié)合的思想 利用 零點(diǎn)分段法 求解 體現(xiàn)了分類討論的思想 通過構(gòu)造函數(shù) 利用函數(shù)的圖象求解 體現(xiàn)了函數(shù)與方程的思想 3 基本不等式定理1 設(shè)a b R 則a2 b2 2ab 當(dāng)且僅當(dāng)a b時(shí) 等號(hào)成立 4 不等式的證明方法證明不等式常用的方法有比較法 綜合法 分析法 反證法 放縮法等 1 比較法 求差比較法 求商比較法 求差比較法 由于a b a b 0 ab 只要證明a b 0即可 2 分析法 從待證不等式出發(fā) 逐步尋求使它成立的充分條件 直到將待證不等式歸結(jié)為一個(gè)已成立的不等式 已知條件 定理等 3 綜合法 從已知條件出發(fā) 利用不等式的有關(guān)性質(zhì)或定理 經(jīng)過推理論證 推導(dǎo)出所要證明的不等式成立 即 由因?qū)す?的方法 這種證明不等式的方法稱為綜合法 5 柯西不等式 考向一 考向二 考向三 考向四 解絕對(duì)值不等式 求參數(shù)范圍解題策略一分離參數(shù)法求參數(shù)范圍例1已知函數(shù)f x x 1 x 2 1 求不等式f x 1的解集 2 若不等式f x x2 x m的解集非空 求m的取值范圍 當(dāng)x2時(shí) 由f x 1解得x 2 所以f x 1的解集為 x x 1 考向一 考向二 考向三 考向四 2 由f x x2 x m得m x 1 x 2 x2 x 解題心得1 解含有兩個(gè)以上絕對(duì)值符號(hào)的不等式 一般解法是零點(diǎn)分段法 即令各個(gè)絕對(duì)值式子等于0 求出各自零點(diǎn) 把零點(diǎn)在數(shù)軸上從小到大排列 然后按零點(diǎn)分?jǐn)?shù)軸形成的各區(qū)間去絕對(duì)值 進(jìn)而將絕對(duì)值不等式轉(zhuǎn)化為常規(guī)不等式 2 在不等式恒成立的情況下 求參數(shù)的取值范圍 可以采取分離參數(shù) 通過求對(duì)應(yīng)函數(shù)最值的方法獲得 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練1已知函數(shù)f x x m 2x 1 m 0 1 當(dāng)m 1時(shí) 解不等式f x 3 2 當(dāng)x m 2m2 時(shí) 不等式f x x 1 恒成立 求實(shí)數(shù)m的取值范圍 解 1 m 1時(shí) f x x 1 2x 1 f x 3 解得x 1或x 1 考向一 考向二 考向三 考向四 考向一 考向二 考向三 考向四 解題策略二求函數(shù)最值構(gòu)造不等式求參數(shù)范圍例2已知函數(shù)f x x2 ax 4 g x x 1 x 1 1 當(dāng)a 1時(shí) 求不等式f x g x 的解集 2 若不等式f x g x 的解集包含 1 1 求a的取值范圍 解 1 當(dāng)a 1時(shí) 不等式f x g x 等價(jià)于x2 x x 1 x 1 4 0 當(dāng)x 1時(shí) 式化為x2 3x 4 0 無解 當(dāng) 1 x 1時(shí) 式化為x2 x 2 0 從而 1 x 1 考向一 考向二 考向三 考向四 2 當(dāng)x 1 1 時(shí) g x 2 所以f x g x 的解集包含 1 1 等價(jià)于當(dāng)x 1 1 時(shí)f x 2 又f x 在 1 1 的最小值必為f 1 與f 1 之一 所以f 1 2且f 1 2 得 1 a 1 所以a的取值范圍為 1 1 解題心得1 對(duì)于求參數(shù)范圍問題 可將已知條件進(jìn)行等價(jià)轉(zhuǎn)化 得到含有參數(shù)的不等式恒成立 此時(shí)通過求函數(shù)的最值得到關(guān)于參數(shù)的不等式 解不等式得參數(shù)范圍 2 解答此類問題應(yīng)熟記以下轉(zhuǎn)化 f x a恒成立 f x min a f x a有解 f x max a f x a無解 f x max a f x a無解 f x min a 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練2 2018全國 理23 設(shè)函數(shù)f x 5 x a x 2 1 當(dāng)a 1時(shí) 求不等式f x 0的解集 2 若f x 1 求a的取值范圍 可得f x 0的解集為 x 2 x 3 2 f x 1等價(jià)于 x a x 2 4 而 x a x 2 a 2 且當(dāng)x 2時(shí)等號(hào)成立 故f x 1等價(jià)于 a 2 4 由 a 2 4可得a 6或a 2 所以a的取值范圍是 6 2 考向一 考向二 考向三 考向四 不等式的證明例3已知a 0 b 0 a3 b3 2 證明 1 a b a5 b5 4 2 a b 2 證明 1 a b a5 b5 a6 ab5 a5b b6 a3 b3 2 2a3b3 ab a4 b4 4 ab a2 b2 2 4 2 因?yàn)?a b 3 a3 3a2b 3ab2 b3 所以 a b 3 8 因此a b 2 考向一 考向二 考向三 考向四 解題心得不等式證明的常用方法是 比較法 綜合法與分析法 其中運(yùn)用綜合法證明不等式時(shí) 主要是運(yùn)用基本不等式證明 與絕對(duì)值有關(guān)的不等式證明常用絕對(duì)值三角不等式 證明過程中一方面要注意不等式成立的條件 另一方面要善于對(duì)式子進(jìn)行恰當(dāng)?shù)霓D(zhuǎn)化 變形 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練3設(shè)a b c d均為正數(shù) 且a b c d 證明 考向一 考向二 考向三 考向四 2 若 a b cd 因?yàn)閍 b c d 所以ab cd 于是 a b 2 a b 2 4ab c d 2 4cd c d 2 因此 a b c d 考向一 考向二 考向三 考向四 求最值解題策略一利用基本不等式求最值 1 求a3 b3的最小值 2 是否存在a b 使得2a 3b 6 并說明理由 考向一 考向二 考向三 考向四 解題心得若題設(shè)條件有 或者經(jīng)過化簡題設(shè)條件得到 兩個(gè)正數(shù)和或兩個(gè)正數(shù)積為定值 則可利用基本不等式求兩個(gè)正數(shù)積的最大值或兩個(gè)正數(shù)和的最小值 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練4已知a 0 b 0 函數(shù)f x x a 2x b 的最小值為1 1 求證 2a b 2 2 若a 2b tab恒成立 求實(shí)數(shù)t的最大值 考向一 考向二 考向三 考向四 2 解 a 2b tab恒成立 考向一 考向二 考向三 考向四 解題策略二利用柯西不等式求最值 考向一 考向二 考向三 考向四 解題心得利用柯西不等式求最值時(shí) 一定要滿足柯西不等式的形式 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練5 2018江蘇 21D 若x y z為實(shí)數(shù) 且x 2y 2z 6 求x2 y2 z2的最小值 解 由柯西不等式 得 x2 y2 z2 12 22 22 x 2y 2z 2 因?yàn)閤 2y 2z 6 所以x2 y2 z2 4 所以x2 y2 z2的最小值為4 考向一 考向二 考向三 考向四 絕對(duì)值三角不等式的應(yīng)用 1 證明f x 2 2 若f 3 5 求a的取值范圍 1 證明 由a 0 所以f x 2 考向一 考向二 考向三 考向四 解題心得絕對(duì)值三角不等式 基本不等式在解決多變量代數(shù)式的最值問題中有著重要的應(yīng)用 無論運(yùn)用絕對(duì)值三角不等式還是運(yùn)用基本不等式時(shí)應(yīng)注意等號(hào)成立的條件 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練6已知f x x a x 3 1 當(dāng)a 1時(shí) 求f x 的最小值 2 若不等式f x 3的解集非空 求a的取值范圍 解 1 當(dāng)a 1時(shí) f x x 1 x 3 x 1 x 3 2 f x 的最小值為2 當(dāng)且僅當(dāng)1 x 3時(shí)取得最小值 2 x R時(shí) 恒有 x a x 3 x a x 3 3 a 不等式f x 3的解集非空 3 a 3 0 a 6- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)總復(fù)習(xí) 9.2 不等式選講課件 2019 年高 數(shù)學(xué) 復(fù)習(xí) 不等式 課件
鏈接地址:http://www.820124.com/p-5701986.html