浙江省2019年中考數(shù)學(xué) 第六單元 圓 課時(shí)訓(xùn)練28 與圓有關(guān)的計(jì)算練習(xí) (新版)浙教版.doc
《浙江省2019年中考數(shù)學(xué) 第六單元 圓 課時(shí)訓(xùn)練28 與圓有關(guān)的計(jì)算練習(xí) (新版)浙教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省2019年中考數(shù)學(xué) 第六單元 圓 課時(shí)訓(xùn)練28 與圓有關(guān)的計(jì)算練習(xí) (新版)浙教版.doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)訓(xùn)練(二十八) 與圓有關(guān)的計(jì)算 |夯實(shí)基礎(chǔ)| 1.[xx寧波] 如圖K28-1,在△ABC中,∠ACB=90,∠A=30,AB=4,以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交邊AB于點(diǎn)D,則CD的長(zhǎng)為 ( ) 圖K28-1 A.16π B.13π C.23π D.233π 2.[xx成都] 如圖K28-2,在?ABCD中,∠B=60,☉C的半徑為3,則圖中陰影部分的面積是 ( ) 圖K28-2 A.π B.2π C.3π D.6π 3.[xx仙桃] 一個(gè)圓錐的側(cè)面積是底面積的2倍,則該圓錐側(cè)面展開(kāi)圖的圓心角的度數(shù)是 ( ) A.120 B.180 C.240 D.300 4.[xx達(dá)州] 如圖K28-3,將矩形ABCD繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90至圖①位置,繼續(xù)繞右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)xx次.若AB=4,AD=3,則頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑總長(zhǎng)為 ( ) 圖K28-3 A.xxπ B.2034π C.3024π D.3026π 5.[xx南寧] 如圖K28-4,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形是萊洛三角形,AB=2,則萊洛三角形(即陰影部分面積)為 ( ) 圖K28-4 A.π+3 B.π-3 C.2π-3 D.2π-23 6.如圖K28-5所示,將長(zhǎng)為8 cm的鐵絲AB首尾相接圍成一個(gè)半徑為2 cm的扇形,則S扇形= cm2. 圖K28-5 7.如圖K28-6,正六邊形ABCDEF內(nèi)接于☉O,☉O的半徑為1,則AB的長(zhǎng)為 . 圖K28-6 8.[xx齊齊哈爾] 已知圓錐的底面半徑為20,側(cè)面積為400π,則這個(gè)圓錐的母線長(zhǎng)為 . 9.[xx安順] 如圖K28-7,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長(zhǎng)為2 cm,∠BOC=60,∠BCO=90,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△BOC,點(diǎn)C在OA上,則邊BC掃過(guò)區(qū)域(圖中陰影部分)的面積為 cm2.(結(jié)果保留π) 圖K28-7 10.[xx鹽城] 如圖K28-8,在邊長(zhǎng)為1的小正方形網(wǎng)格中,將△ABC繞某點(diǎn)旋轉(zhuǎn)到△ABC的位置,則點(diǎn)B運(yùn)動(dòng)的最短路徑長(zhǎng)為 . 圖K28-8 11.[xx龍東] 如圖K28-9,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1). (1)畫(huà)△ABC關(guān)于x軸對(duì)稱的△A1B1C1; (2)畫(huà)△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后的△A2B2C2; (3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π). 圖K28-9 12.如圖K28-10,AB是☉O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在☉O上,PB與CD交于點(diǎn)F,∠1=∠C(∠1是指∠PBC). (1)求證:CB∥PD; (2)若∠1=22.5,☉O的半徑R=2,求劣弧AC的長(zhǎng). 圖K28-10 |拓展提升| 13.如圖K28-11,AB為☉O的切線,切點(diǎn)為B,連結(jié)AO,AO與☉O交于點(diǎn)C,BD為☉O的直徑,連結(jié)CD.若∠A=30,☉O的半徑為2,則圖中陰影部分的面積為 ( ) 圖K28-11 A.4π3-3 B.4π3-23 C.π-3 D.2π3-3 14.[xx襄陽(yáng)] 如圖K28-12,AB是☉O的直徑,AM和BN是☉O的兩條切線,E為☉O上一點(diǎn),過(guò)點(diǎn)E作直線DC分別交AM,BN于點(diǎn)D,C,且CB=CE. (1)求證:DA=DE; (2)若AB=6,CD=43,求圖中陰影部分的面積. 圖K28-12 參考答案 1.C 2.C [解析] ∵四邊形ABCD為平行四邊形,AB∥CD,∴∠B+∠C=180.∵∠B=60,∴∠C=120,∴陰影部分的面積=120π32360=3π.故選擇C. 3.B [解析] 設(shè)母線長(zhǎng)為R,圓錐側(cè)面展開(kāi)圖所對(duì)應(yīng)扇形圓心角的度數(shù)為n,底面半徑為r. ∵底面周長(zhǎng)為2πr,底面面積為πr2,側(cè)面積為πrR=2πr2,∴R=2r. ∵圓錐底面周長(zhǎng)為2πr,∴2πr=nπ2r180,∴n=180.故選B. 4.D [解析] 轉(zhuǎn)動(dòng)第一次的路線長(zhǎng)是90π4180=2π, 轉(zhuǎn)動(dòng)第二次的路線長(zhǎng)是90π5180=52π, 轉(zhuǎn)動(dòng)第三次的路線長(zhǎng)是90π3180=32π, 轉(zhuǎn)動(dòng)第四次的路線長(zhǎng)是0, 轉(zhuǎn)動(dòng)第五次的路線長(zhǎng)是90π4180=2π, 以此類推,每四次為一個(gè)循環(huán), 故頂點(diǎn)A連續(xù)轉(zhuǎn)動(dòng)四次經(jīng)過(guò)的路線總長(zhǎng)為2π+52π+32π=6π. ∵xx4=504……1, ∴這樣連續(xù)旋轉(zhuǎn)后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑總長(zhǎng)是6π504+2π=3026π. 故選D. 5.D [解析] 萊洛三角形的面積實(shí)際上是由三塊相同的扇形疊加而成,其面積等于三塊扇形的面積相加減去兩個(gè)等邊三角形的面積,即S陰影=3S扇形-2S△ABC. 由題意得,S扇形=π2260360=23π.要求等邊三角形ABC的面積需要先求高. 如圖,過(guò)A作AD⊥BC于點(diǎn)D, 可知在Rt△ABD中,sin60=ADAB=AD2, ∴AD=2sin60=3, ∴S△ABC=12BCAD=1223=3. ∴S陰影=3S扇形-2S△ABC=323π-23=2π-23. 6.4 7.π3 8.20 [解析] 設(shè)這個(gè)圓錐的母線長(zhǎng)為r,由圓錐的特點(diǎn)可知,底面圓的周長(zhǎng)等于側(cè)面展開(kāi)圖扇形的弧長(zhǎng),則nπr180=220π=40π,由側(cè)面積公式,得nπr2360=400π,∴nπr2360nπr180=r2=400π40π,解得r=20,故答案為20. 9.π4 [解析] ∵∠BOC=60,△BOC是△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)得到的,∴∠BOC=60,△BOC≌△BOC. ∵∠BCO=90,∴∠BCO=90,∠BOC=60,∠CBO=30.∴∠BOB=120.∵AB=2 cm,cos∠BOC=OCOB=12, ∴OB=1 cm,OC=OC=12 cm.∴S扇形BOB=120π12360=π3 cm2,S扇形COC=120π(12)2360=π12 cm2. ∴陰影部分的面積=S扇形BOB+S△BOC-(S△BOC+S扇形COC)=π3-π12=π4(cm)2. 10.132π [解析] ①先確定旋轉(zhuǎn)中心.作線段CC的垂直平分線,連結(jié)AA,作線段AA的垂直平分線與CC的垂直平分線交于點(diǎn)O,點(diǎn)O恰好在格點(diǎn)上.②確定最小旋轉(zhuǎn)角.最小旋轉(zhuǎn)角為90.③確定旋轉(zhuǎn)半徑.連結(jié)OB,由勾股定理得OB=22+32=13.所以點(diǎn)B運(yùn)動(dòng)的最短路徑長(zhǎng)為90π13180=132π. 11.解:(1)如圖所示,△A1B1C1即為所求作的三角形; (2)如圖所示,△A2B2C2即為所求作的三角形; (3)∵OC=12+32=10,OB=12+12=2, ∴S=14π(OC2-OB2)=2π. 12.解:(1)證明:∵∠1=∠D,∠1=∠C, ∴∠C=∠D,∴CB∥PD. (2)連結(jié)OC,OD,BD. ∵CD⊥AB,且AB是直徑, ∴∠BCD=∠BDC=∠1=22.5. ∴∠BOC=2∠BDC=45,∴∠AOC=135. ∴l(xiāng)AC=nπR180=135π2180=32π. 13.A 14.解:(1)證明:連結(jié)OE,OC, ∵BN切☉O于點(diǎn)B,∴∠OBN=90. ∵OE=OB,OC=OC,CE=CB, ∴△OEC≌△OBC, ∴∠OEC=∠OBC=90, ∴CD是☉O的切線. ∵AD切☉O于點(diǎn)A, ∴DA=DE. (2)過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形, ∴AD=BF,DF=AB=6. ∴DC=BC+AD=43. ∵FC=DC2-DF2=23, ∴BC-AD=23, ∴BC=33. 在Rt△OBC中,tan∠BOC=BCBO=3, ∴∠BOC=60. ∵△OEC≌△OBC, ∴∠BOE=2∠BOC=120. ∴S陰影部分=S四邊形BCEO-S扇形OBE=212BCOB-120360πOB2=93-3π.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江省2019年中考數(shù)學(xué) 第六單元 課時(shí)訓(xùn)練28 與圓有關(guān)的計(jì)算練習(xí) 新版浙教版 浙江省 2019 年中 數(shù)學(xué) 第六 單元 課時(shí) 訓(xùn)練 28 有關(guān) 計(jì)算 練習(xí) 新版 浙教版
鏈接地址:http://www.820124.com/p-6060410.html