《(通用版)2019版高考數學二輪復習 專題跟蹤檢測(四)“導數與不等式”考法面面觀 理(重點生含解析).doc》由會員分享,可在線閱讀,更多相關《(通用版)2019版高考數學二輪復習 專題跟蹤檢測(四)“導數與不等式”考法面面觀 理(重點生含解析).doc(6頁珍藏版)》請在裝配圖網上搜索。
專題跟蹤檢測(四) “導數與不等式”考法面面觀
1.(2019屆高三唐山模擬)已知f(x)=x2-a2ln x,a>0.
(1)求函數f(x)的最小值;
(2)當x>2a時,證明:>a.
解:(1)函數f(x)的定義域為(0,+∞),
f′(x)=x-=.
當x∈(0,a)時,f′(x)<0,f(x)單調遞減;
當x∈(a,+∞)時,f′(x)>0,f(x)單調遞增.
所以當x=a時,f(x)取得極小值,也是最小值,且f(a)=a2-a2ln a.
(2)證明:由(1)知,f(x)在(2a,+∞)上單調遞增,
則所證不等式等價于f(x)-f(2a)-a(x-2a)>0.
設g(x)=f(x)-f(2a)-a(x-2a),
則當x>2a時,
g′(x)=f′(x)-a=x--a
=>0,
所以g(x)在(2a,+∞)上單調遞增,
當x>2a時,g(x)>g(2a)=0,
即f(x)-f(2a)-a(x-2a)>0,
故>a.
2.已知函數f(x)=xex+2x+aln x,曲線y=f(x)在點P(1,f(1))處的切線與直線x+2y-1=0垂直.
(1)求實數a的值;
(2)求證:f(x)>x2+2.
解:(1)因為f′(x)=(x+1)ex+2+,
所以曲線y=f(x)在點P(1,f(1))處的切線斜率k=f′(1)=2e+2+a.
而直線x+2y-1=0的斜率為-,
由題意可得(2e+2+a)=-1,
解得a=-2e.
(2)證明:由(1)知,f(x)=xex+2x-2eln x.
不等式f(x)>x2+2可化為xex+2x-2eln x-x2-2>0.
設g(x)=xex+2x-2eln x-x2-2,
則g′(x)=(x+1)ex+2--2x.
記h(x)=(x+1)ex+2--2x(x>0),
則h′(x)=(x+2)ex+-2,
因為x>0,所以x+2>2,ex>1,故(x+2)ex>2,
又>0,所以h′(x)=(x+2)ex+-2>0,
所以函數h(x)在(0,+∞)上單調遞增.
又h(1)=2e+2-2e-2=0,
所以當x∈(0,1)時,h(x)<0,即g′(x)<0,函數g(x)單調遞減;
當x∈(1,+∞)時,h(x)>0,即g′(x)>0,函數g(x)單調遞增.
所以g(x)≥g(1)=e+2-2eln 1-1-2=e-1,
顯然e-1>0,
所以g(x)>0,即xex+2x-2eln x>x2+2,也就是f(x)>x2+2.
3.(2018武漢模擬)設函數f(x)=(1+x-x2)ex(e=2.718 28…是自然對數的底數).
(1)討論f(x)的單調性;
(2)當x≥0時,f(x)≤ax+1+2x2恒成立,求實數a的取值范圍.
解:(1)f′(x)=(2-x-x2)ex=-(x+2)(x-1)ex.
當x<-2或x>1時,f′(x)<0;當-2
0.
所以f(x)在(-∞,-2),(1,+∞)上單調遞減,在(-2,1)上單調遞增.
(2)設F(x)=f(x)-(ax+1+2x2),F(xiàn)(0)=0,
F′(x)=(2-x-x2)ex-4x-a,F(xiàn)′(0)=2-a,
當a≥2時,F(xiàn)′(x)=(2-x-x2)ex-4x-a≤-(x+2)(x-1)ex-4x-2≤-(x+2)(x-1)ex-x-2=-(x+2)[(x-1)ex+1],
設h(x)=(x-1)ex+1,h′(x)=xex≥0,所以h(x)在[0,+∞)上單調遞增,h(x)=(x-1)ex+1≥h(0)=0,
即F′(x)≤0在[0,+∞)上恒成立,F(xiàn)(x)在[0,+∞)上單調遞減,F(xiàn)(x)≤F(0)=0,所以f(x)≤ax+1+2x2在[0,+∞)上恒成立.
當a<2時,F(xiàn)′(0)=2-a>0,而函數F′(x)的圖象在(0,+∞)上連續(xù)且x→+∞,F(xiàn)′(x)逐漸趨近負無窮,必存在正實數x0使得F′(x0)=0且在(0,x0)上F′(x)>0,所以F(x)在(0,x0)上單調遞增,此時F(x)>F(0)=0,f(x)>ax+1+2x2有解,不滿足題意.
綜上,a的取值范圍是[2,+∞).
4.(2018南昌模擬)設函數f(x)=2ln x-mx2+1.
(1)討論函數f(x)的單調性;
(2)當f(x)有極值時,若存在x0,使得f(x0)>m-1成立,求實數m的取值范圍.
解:(1)函數f(x)的定義域為(0,+∞),
f′(x)=-2mx=,
當m≤0時,f′(x)>0,∴f(x)在(0,+∞)上單調遞增;
當m>0時,令f′(x)>0,得0,
∴f(x)在上單調遞增,在上單調遞減.
(2)由(1)知,當f(x)有極值時,m>0,且f(x)在上單調遞增,在上單調遞減.
∴f(x)max=f=2ln-m+1=-ln m,
若存在x0,使得f(x0)>m-1成立,則f(x)max>m-1.
即-ln m>m-1,ln m+m-1<0成立.
令g(x)=x+ln x-1(x>0),
∵g′(x)=1+>0,∴g(x)在(0,+∞)上單調遞增,且g(1)=0,∴00時,對任意的x∈,恒有f(x)≤e-1成立,求實數b的取值范圍.
解:(1)函數f(x)的定義域為(0,+∞).
當b=2時,f(x)=aln x+x2,
所以f′(x)=+2x=.
①當a>0時,f′(x)>0,所以函數f(x)在(0,+∞)上單調遞增.
②當a<0時,令f′(x)=0,解得x= (負值舍去),
當0時,f′(x)>0,所以函數f(x)在上單調遞增.
綜上所述,當b=2,a>0時,函數f(x)在(0,+∞)上單調遞增;
當b=2,a<0時,函數f(x)在上單調遞減,在上單調遞增.
(2)因為對任意的x∈,恒有f(x)≤e-1成立,
所以當x∈時,f(x)max≤e-1.
當a+b=0,b>0時,f(x)=-bln x+xb,f′(x)=-+bxb-1=.
令f′(x)<0,得00,得x>1.
所以函數f(x)在上單調遞減,在(1,e]上單調遞增,f(x)max為f=b+e-b與f(e)=-b+eb中的較大者.
f(e)-f=eb-e-b-2b.
令g(m)=em-e-m-2m(m>0),
則當m>0時,g′(m)=em+e-m-2>2-2=0,
所以g(m)在(0,+∞)上單調遞增,故g(m)>g(0)=0,所以f(e)>f,從而f(x)max=f(e)=-b+eb
所以-b+eb≤e-1,即eb-b-e+1≤0.
設φ(t)=et-t-e+1(t>0),則φ′(t)=et-1>0,
所以φ(t)在(0,+∞)上單調遞增.
又φ(1)=0,所以eb-b-e+1≤0的解集為(0,1].
所以b的取值范圍為(0,1].
6.(2018開封模擬)已知函數f(x)=ax+x2-xln a(a>0,a≠1).
(1)當a=e(e是自然對數的底數)時,求函數f(x)的單調區(qū)間;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求實數a的取值范圍.
解:(1)f′(x)=axln a+2x-ln a=2x+(ax-1)ln a.
當a=e時,f′(x)=2x+ex-1,其在R上是增函數,
又f′(0)=0,∴f′(x)>0的解集為(0,+∞),f′(x)<0的解集為(-∞,0),故函數f(x)的單調遞增區(qū)間為(0,+∞),單調遞減區(qū)間為(-∞,0).
(2)∵存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
又當x1,x2∈[-1,1]時,|f(x1)-f(x2)|≤f(x)max-f(x)min,
∴只要f(x)max-f(x)min≥e-1即可.
∵當a>1時,ln a>0,y=(ax-1)ln a在R上是增函數,
當01或00),
∴g′(a)=1+-=2≥0,
∴g(a)=a--2ln a在(0,+∞)上是增函數.
而g(1)=0,故當a>1時,g(a)>0,即f(1)>f(-1);
當01時,f(x)max-f(x)min=f(1)-f(0)≥e-1,即a-ln a≥e-1,
函數y=a-ln a在(1,+∞)上是增函數,解得a≥e;
當0
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網址水印。
- 3、該文檔所得收入(下載+內容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
通用版2019版高考數學二輪復習
專題跟蹤檢測四“導數與不等式”考法面面觀
理重點生,含解析
通用版
2019
高考
數學
二輪
復習
專題
跟蹤
檢測
導數
不等式
面面觀
重點
解析
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-6084625.html