《(通用版)2019版高考數學二輪復習 專題檢測(十四)直線與圓 理(普通生含解析).doc》由會員分享,可在線閱讀,更多相關《(通用版)2019版高考數學二輪復習 專題檢測(十四)直線與圓 理(普通生含解析).doc(8頁珍藏版)》請在裝配圖網上搜索。
專題檢測(十四) 直線與圓
A組——“6+3+3”考點落實練
一、選擇題
1.“ab=4”是“直線2x+ay-1=0與直線bx+2y-2=0平行”的( )
A.充要條件 B.充分不必要條件
C.必要不充分條件 D.既不充分也不必要條件
解析:選C 因為兩直線平行,所以斜率相等,即-=-,可得ab=4,又當a=1,b=4時,滿足ab=4,但是兩直線重合,故選C.
2.已知直線l1過點(-2,0)且傾斜角為30,直線l2過點(2,0)且與直線l1垂直,則直線l1與直線l2的交點坐標為( )
A.(3,) B.(2,)
C.(1,) D.
解析:選C 直線l1的斜率k1=tan 30=,因為直線l2與直線l1垂直,所以直線l2的斜率k2=-=-,所以直線l1的方程為y=(x+2),直線l2的方程為y=-(x-2),聯立解得即直線l1與直線l2的交點坐標為(1,).
3.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關系是( )
A.內切 B.相交
C.外切 D.相離
解析:選B 圓M:x2+y2-2ay=0(a>0)可化為x2+(y-a)2=a2,由題意,M(0,a)到直線x+y=0的距離d=,所以a2=+2,解得a=2.所以圓M:x2+(y-2)2=4,所以兩圓的圓心距為,半徑和為3,半徑差為1,故兩圓相交.
4.(2018全國卷Ⅲ)直線x+y+2=0分別與x軸,y軸交于A,B兩點,點P在圓(x-2)2+y2=2上,則△ABP面積的取值范圍是( )
A.[2,6] B.[4,8]
C.[,3] D.[2,3]
解析:選A 設圓(x-2)2+y2=2的圓心為C,半徑為r,點P到直線x+y+2=0的距離為d,
則圓心C(2,0),r=,
所以圓心C到直線x+y+2=0的距離為=2,
可得dmax=2+r=3,dmin=2-r=.
由已知條件可得|AB|=2,
所以△ABP面積的最大值為|AB|dmax=6,
△ABP面積的最小值為|AB|dmin=2.
綜上,△ABP面積的取值范圍是[2,6].
5.已知圓O:x2+y2=4上到直線l:x+y=a的距離等于1的點至少有2個,則實數a的取值范圍為( )
A.(-3,3)
B.(-∞,-3)∪(3,+∞)
C.(-2,2)
D.[-3,3 ]
解析:選A 由圓的方程可知圓心為(0,0),半徑為2.因為圓O上到直線l的距離等于1的點至少有2個,所以圓心到直線l的距離d
0,y1+y2=,x1+x2=k(y1+y2)-2=-,因為=+,故M,又點M在圓C上,故+=4,解得k=0.
法二:由直線與圓相交于A,B兩點,=+,且點M在圓C上,得圓心C(0,0)到直線x-ky+1=0的距離為半徑的一半,為1,即d==1,解得k=0.
二、填空題
7.已知直線l:x+my-3=0與圓C:x2+y2=4相切,則m=________.
解析:因為圓C:x2+y2=4的圓心為(0,0),半徑為2,直線l:x+my-3=0與圓C: x2+y2=4相切,所以2=,解得m= .
答案:
8.過點C(3,4)作圓x2+y2=5的兩條切線,切點分別為A,B,則點C到直線AB的距離為________.
解析:以OC為直徑的圓的方程為2+(y-2)2=2,AB為圓C與圓O:x2+y2=5的公共弦,所以AB的方程為x2+y2-=5-,化簡得3x+4y-5=0,所以C到直線AB的距離d==4.
答案:4
9.(2018貴陽適應性考試)已知直線l:ax-3y+12=0與圓M:x2+y2-4y=0相交于A,B兩點,且∠AMB=,則實數a=________.
解析:直線l的方程可變形為y=ax+4,所以直線l過定點(0,4),且該點在圓M上.圓的方程可變形為x2+(y-2)2=4,所以圓心為M(0,2),半徑為2.如圖,因為∠AMB=,所以△AMB是等邊三角形,且邊長為2,高為,即圓心M到直線l的距離為,所以=,解得a=.
答案:
三、解答題
10.已知圓(x-1)2+y2=25,直線ax-y+5=0與圓相交于不同的兩點A,B.
(1)求實數a的取值范圍;
(2)若弦AB的垂直平分線l過點P(-2,4),求實數a的值.
解:(1)把直線ax-y+5=0代入圓的方程,
消去y整理,得(a2+1)x2+2(5a-1)x+1=0,
由于直線ax-y+5=0交圓于A,B兩點,
故Δ=4(5a-1)2-4(a2+1)>0,
即12a2-5a>0,解得a>或a<0,
所以實數a的取值范圍是(-∞,0)∪.
(2)由于直線l為弦AB的垂直平分線,且直線AB的斜率為a,則直線l的斜率為-,
所以直線l的方程為y=-(x+2)+4,
即x+ay+2-4a=0,由于l垂直平分弦AB,
故圓心M(1,0)必在l上,所以1+0+2-4a=0,
解得a=,由于∈,
所以a=.
11.已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
解:(1)設圓A的半徑為R.
因為圓A與直線l1:x+2y+7=0相切,
所以R==2.
所以圓A的方程為(x+1)2+(y-2)2=20.
(2)當直線l與x軸垂直時,易知x=-2符合題意;
當直線l與x軸不垂直時,
設直線l的方程為y=k(x+2),即kx-y+2k=0.
由于|MN|=2,于是2+()2=20,解得k=,
此時,直線l的方程為3x-4y+6=0.
所以所求直線l的方程為x=-2或3x-4y+6=0.
12.在平面直角坐標系xOy中,直線x-y+1=0截以原點O為圓心的圓所得的弦長為.
(1)求圓O的方程;
(2)若直線l與圓O相切于第一象限,且直線l與坐標軸交于點D,E,當線段DE的長度最小時,求直線l的方程.
解:(1)因為點O到直線x-y+1=0的距離為,
所以圓O的半徑為 =,
故圓O的方程為x2+y2=2.
(2)設直線l的方程為+=1(a>0,b>0),即bx+ay-ab=0,
由直線l與圓O相切,得=,即+=,則|DE|2=a2+b2=2(a2+b2)=4++≥8,當且僅當a=b=2時取等號,此時直線l的方程為x+y-2=0.
B組——大題專攻補短練
1.已知點M(-1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的 倍.
(1)求曲線E的方程;
(2)已知m≠0,設直線l1:x-my-1=0交曲線E于A,C兩點,直線l2:mx+y-m=0交曲線E于B,D兩點.當CD的斜率為-1時,求直線CD的方程.
解:(1)設曲線E上任意一點的坐標為(x,y),
由題意得 =,
整理得x2+y2-4x+1=0,即(x-2)2+y2=3為所求.
(2)由題意知l1⊥l2,且兩條直線均恒過點N(1,0).
設曲線E的圓心為E,則E(2,0),設線段CD的中點為P,連接EP,ED,NP,則直線EP:y=x-2.
設直線CD:y=-x+t,
由解得點P,
由圓的幾何性質,知|NP|=|CD|= ,
而|NP|2=2+2,|ED|2=3,
|EP|2=2,
所以2+2=3-,整理得t2-3t=0,
解得t=0或t=3,
所以直線CD的方程為y=-x或y=-x+3.
2.在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4,設圓C的半徑為1,圓心 在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.
解:(1)因為圓心在直線l:y=2x-4上,也在直線y=x-1上,
所以解方程組得圓心C(3,2),
又因為圓的半徑為1,
所以圓的方程為(x-3)2+(y-2)2=1,
又因為點A(0,3),顯然過點A,圓C的切線的斜率存在,
設所求的切線方程為y=kx+3,即kx-y+3=0,
所以=1,解得k=0或k=-,
所以所求切線方程為y=3或y=-x+3,
即y-3=0或3x+4y-12=0.
(2)因為圓C的圓心在直線l:y=2x-4上,
所以設圓心C為(a,2a-4),
又因為圓C的半徑為1,
則圓C的方程為(x-a)2+(y-2a+4)2=1.
設M(x,y),又因為|MA|=2|MO|,則有
=2,
整理得x2+(y+1)2=4,其表示圓心為(0,-1),半徑為2的圓,設為圓D,
所以點M既在圓C上,又在圓D上,即圓C與圓D有交點,
所以2-1≤ ≤2+1,
解得0≤a≤,
所以圓心C的橫坐標a的取值范圍為.
3.在直角坐標系xOy中,曲線y=x2+mx-2與x軸交于A,B兩點,點C的坐標為(0,1),當m變化時,解答下列問題:
(1)能否出現AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
解:(1)不能出現AC⊥BC的情況,理由如下:
設A(x1,0),B(x2,0),則x1,x2滿足x2+mx-2=0,
所以x1x2=-2.
又C的坐標為(0,1),
故AC的斜率與BC的斜率之積為=-,
所以不能出現AC⊥BC的情況.
(2)證明:由(1)知BC的中點坐標為,
可得BC的中垂線方程為y-=x2.
由(1)可得x1+x2=-m,
所以AB的中垂線方程為x=-.
聯立可得
所以過A,B,C三點的圓的圓心坐標為,半徑r=.
故圓在y軸上截得的弦長為2=3,即過A,B,C三點的圓在y軸上截得的弦長為定值.
4.(2018廣州高中綜合測試)已知定點M(1,0)和N(2,0),動點P滿足|PN|=|PM|.
(1)求動點P的軌跡C的方程;
(2)若A,B為(1)中軌跡C上兩個不同的點,O為坐標原點.設直線OA,OB,AB的斜率分別為k1,k2,k.當k1k2=3時,求k的取值范圍.
解:(1)設動點P的坐標為(x,y),
因為M(1,0),N(2,0),|PN|=|PM|,
所以 =.
整理得,x2+y2=2.
所以動點P的軌跡C的方程為x2+y2=2.
(2)設點A(x1,y1),B(x2,y2),直線AB的方程為y=kx+b.
由消去y,整理得(1+k2)x2+2bkx+b2-2=0.(*)
由Δ=(2bk)2-4(1+k2)(b2-2)>0,得b2<2+2k2.①
由根與系數的關系,得x1+x2=-,x1x2=.②
由k1k2===3,
得(kx1+b)(kx2+b)=3x1x2,
即(k2-3)x1x2+bk(x1+x2)+b2=0.③
將②代入③,整理得b2=3-k2.④
由④得b2=3-k2≥0,解得-≤k≤.⑤
由①和④,解得k<-或k>.⑥
要使k1,k2,k有意義,則x1≠0,x2≠0,
所以0不是方程(*)的根,
所以b2-2≠0,即k≠1且k≠-1.⑦
由⑤⑥⑦,得k的取值范圍為[-,-1)∪∪∪(1, ].
鏈接地址:http://www.820124.com/p-6158313.html