《新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計(jì)問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計(jì)問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
題型一 古典概型與幾何概型
例1 (1)(20xx·陜西變式)設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率為________.
【答案】?。?
【解析】 由|z|≤1可得(x-1)2+y2≤1,表示以(1,0)為圓心,半徑為1的圓及其內(nèi)部,滿足y≥x的部分為如圖陰影所示,由幾何概型概率公式可得所求概率為:
P===-.
(2)有9張卡片分別寫著數(shù)字1,2,3,4,5,6,7,8,9,甲、乙二人依次從中抽取一張卡片(不放回),試求:
①甲抽到寫有奇數(shù)數(shù)字卡片,且乙抽到寫有偶數(shù)數(shù)字卡片的概率;
②甲、乙二人至少抽到一張寫有奇數(shù)數(shù)字卡片
2、的概率.
【解析】
【思維升華】幾何概型與古典概型的本質(zhì)區(qū)別在于試驗(yàn)結(jié)果的無限性,幾何概型經(jīng)常涉及的幾何度量有長(zhǎng)度、面積、體積等,解決幾何概型的關(guān)鍵是找準(zhǔn)幾何測(cè)度;古典概型是命題的重點(diǎn),對(duì)于較復(fù)雜的基本事件空間,列舉時(shí)要按照一定的規(guī)律進(jìn)行,做到不重不漏.
【跟蹤訓(xùn)練1】 (1)為了豐富學(xué)生的課余生活,促進(jìn)校園文化建設(shè),我校高二年級(jí)通過預(yù)賽選出了6個(gè)班(含甲、乙)進(jìn)行經(jīng)典美文誦讀比賽決賽.決賽通過隨機(jī)抽簽方式?jīng)Q定出場(chǎng)順序.求:
①甲、乙兩班恰好在前兩位出場(chǎng)的概率;
②決賽中甲、乙兩班之間的班級(jí)數(shù)記為X,求X的概率分布和均值.
【解析】
隨機(jī)變量X的概率分布為
X
0
3、1
2
3
4
P
因此,E(X)=0×+1×+2×+3×+4×=.
(2)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1.設(shè)點(diǎn)(a,b)是區(qū)域內(nèi)的一點(diǎn),求函數(shù)y=f(x)在區(qū)間1,+∞)上是增函數(shù)的概率.
解 ∵函數(shù)f(x)=ax2-4bx+1的圖象的對(duì)稱軸為直線x=,
要使f(x)=ax2-4bx+1在區(qū)間1,+∞)上為增函數(shù),
當(dāng)且僅當(dāng)a>0且≤1,即2b≤a.
依條件可知事件的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?
,構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠?圖略).
所求概率區(qū)間應(yīng)滿足2b≤a.
由得交點(diǎn)坐標(biāo)為(,),
故所求事件的概率為P==.
題型二 求
4、離散型隨機(jī)變量的均值與方差
例2 (20xx·四川)某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì).
(1)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;
(2)某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的概率分布和均值.
【解析】
(2)根據(jù)題意,X的可能取值為1,2,3,
P(X=1)==,
P(X=2)==,
P(X=3)==,
所以X的概率分布為
X
1
2
5、
3
P
因此,X的均值為
E(X)=1×+2×+3×=2.
【思維升華】離散型隨機(jī)變量的均值和方差的求解,一般分兩步:一是定型,即先判斷隨機(jī)變量的分布是特殊類型,還是一般類型,如兩點(diǎn)分布、二項(xiàng)分布、超幾何分布等屬于特殊類型;二是定性,對(duì)于特殊類型的均值和方差可以直接代入相應(yīng)公式求解,而對(duì)于一般類型的隨機(jī)變量,應(yīng)先求其概率分布然后代入相應(yīng)公式計(jì)算,注意離散型隨機(jī)變量的取值與概率間的對(duì)應(yīng).
【跟蹤訓(xùn)練2】 受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤(rùn)與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎
6、車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
甲
乙
首次出現(xiàn)故障時(shí)間x (年)
02
02
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤(rùn)(萬元)
1
2
3
1.8
2.9
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車的利潤(rùn)為X2,分別求X1,X2的概率分布;
(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從
7、經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.
【解析】 (1)設(shè)“甲品牌轎車首次出現(xiàn)故障發(fā)生在保修期內(nèi)”為事件A,則P(A)==.
(2)依題意得,X1的概率分布為
X1
1
2
3
P
X2的概率分布為
X2
1.8
2.9
P
(3)由(2)得E(X1)=1×+2×+3×
==2.86(萬元),
E(X2)=1.8×+2.9×=2.79(萬元).
因?yàn)镋(X1)>E(X2),所以應(yīng)生產(chǎn)甲品牌轎車.
題型三 概率與統(tǒng)計(jì)的綜合應(yīng)用
例3 經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,
8、每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了130 t該農(nóng)產(chǎn)品.以X(單位: t,100≤X≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).
(1)將T表示為X的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57 000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量X∈100,110),則取X=105,且X=105的概率等于需求量落入100,110)的頻率),求T的均值.
9、
(2)由(1)知利潤(rùn)T不少于57 000元當(dāng)且僅當(dāng)120≤X≤150.
由直方圖知需求量X∈120,150]的頻率為0.7,所以下一個(gè)銷售季度內(nèi)的利潤(rùn)T不少于57 000元的概率的估計(jì)值為0.7.
(3)依題意可得T的概率分布為
T
45 000
53 000
61 000
65 000
P
0.1
0.2
0.3
0.4
所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400.
【思維升華】概率與統(tǒng)計(jì)作為考查考生應(yīng)用意識(shí)的重要載體,已成為近幾年高考的一大亮點(diǎn)和熱點(diǎn).它與其他知識(shí)融合、滲透,情境新
10、穎,充分體現(xiàn)了概率與統(tǒng)計(jì)的工具性和交匯性.
【跟蹤訓(xùn)練3】 如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.
(1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵樹Y的概率分布和均值.
(注:方差s2=(x1-)2+(x2-)2+…+(xn-)2],其中為x1,x2,…,xn的平均數(shù))
同理可得P(Y=18)=,P(Y=19)=,P(Y=20)=,P(Y=21)=.
所以隨機(jī)變量Y的概率分布為
Y
17
18
19
20
21
P
E(Y)=17×+18×+19×+20×+21×=19.
歡迎訪問“高中試卷網(wǎng)”——http://sj.fjjy.org