《新版高三數(shù)學(xué) 第51練 空間點(diǎn)、線、面的位置關(guān)系練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高三數(shù)學(xué) 第51練 空間點(diǎn)、線、面的位置關(guān)系練習(xí)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
第51練 空間點(diǎn)、線、面的位置關(guān)系
訓(xùn)練目標(biāo)
(1)掌握平面的性質(zhì),能應(yīng)用這些性質(zhì)判斷線面、面面的位置關(guān)系;(2)會(huì)利用定義判斷線線、線面、面面的位置關(guān)系.
訓(xùn)練題型
判斷點(diǎn)、線、面的位置關(guān)系.
解題策略
(1)借助幾何體,將抽象問題形象化;(2)巧用反證法、排除法、特殊位置法化難為易.
一、選擇題
1.已知平面α與平面β、γ都相交,則這三個(gè)平面可能的交線有(
3、 )
A.1條或2條 B.2條或3條
C.1條或3條 D.1條或2條或3條
2.已知直線l和平面α,無(wú)論直線l與平面α具有怎樣的位置關(guān)系,在平面α內(nèi)總存在一條直線與直線l( )
A.相交 B.平行
C.垂直 D.異面
3.(20xx·蚌埠質(zhì)檢)已知l1,l2,l3是空間三條不同的直線,則下列命題正確的是( )
A.若l1⊥l2,l1⊥l3,則l2∥l3
B.若l1⊥l2,l2∥l3,則l1⊥l3
C.若l1∥l2,l2∥l3,則l1,l2,l3共面
D.若l1,l2,l3共點(diǎn),則l1,l2,l3共面
4.平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的投影分別是m1
4、和n1,給出下列四個(gè)命題:①m1⊥n1?m⊥n;②m⊥n?m1⊥n1;③m1與n1相交?m與n相交或重合;④m1與n1平行?m與n平行或重合.其中不正確的命題個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
5.(20xx·江門模擬)如圖,四棱柱ABCD-A1B1C1D1中,E,F(xiàn)分別是AB1,BC1的中點(diǎn).下列結(jié)論中,正確的是( )
A.EF⊥BB1 B.EF∥平面ACC1A1
C.EF⊥BD D.EF⊥平面BCC1B1
6.(20xx·青島平度三校上學(xué)期期末)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=,則下列結(jié)論中
5、錯(cuò)誤的是( )
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值
D.△AEF的面積與△BEF的面積相等
7.有下列命題:
①如果兩個(gè)平面有三個(gè)不共線的公共點(diǎn),則這兩個(gè)平面重合;
②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若直線l與平面α平行,則l與平面α內(nèi)的任一直線平行;
④如果兩條平行線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行;
⑤若直線l與平面α平行,則l與平面α內(nèi)的任一直線都沒有公共點(diǎn).
其中正確命題的個(gè)數(shù)是( )
A.2 B.3
C.4 D.5
8.(20xx·上饒一模)如圖,正三棱柱ABC-A
6、1B1C1的各棱長(zhǎng)都等于2,D在AC1上,F(xiàn)為BB1的中點(diǎn),且FD⊥AC1,有下述結(jié)論:
①AC1⊥BC;
②=1;
③平面FAC1⊥平面ACC1A1;
④三棱錐D-ACF的體積為.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
二、填空題
9.如圖所示,正方體的棱長(zhǎng)為1,B′C∩BC′=O,則AO與A′C′所成角的度數(shù)為________.
10.α,β是兩平面,AB,CD是兩條線段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一個(gè)條件,就能得出BD⊥EF,現(xiàn)有下列條件:
①AC⊥β;②AC與α,β所成的角相等;③AC與CD在β
7、內(nèi)的射影在同一條直線上;④AC∥EF.其中能成為增加條件的序號(hào)是________.
11.設(shè)a,b,c是空間中的三條直線,給出以下幾個(gè)命題:
①設(shè)a⊥b,b⊥c,則a∥c;
②若a,b是異面直線,b,c是異面直線,則a,c也是異面直線;
③若a和b相交,b和c相交,則a和c也相交.
其中真命題的個(gè)數(shù)是________.
12.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),M分別是線段AB、AD、AA1的中點(diǎn),又P、Q分別在線段A1B1、A1D1上,且A1P=A1Q=x(0
8、C;
③直線l與平面BCC1B1不垂直;
④當(dāng)x變化時(shí),l不是定直線.
其中不成立的結(jié)論是________.(寫出所有不成立結(jié)論的序號(hào))
答案精析
1.D
2.C [當(dāng)直線l與平面α平行時(shí),在平面α內(nèi)至少有一條直線與直線l垂直;當(dāng)直線l?平面α?xí)r,在平面α內(nèi)至少有一條直線與直線l垂直;當(dāng)直線l與平面α相交時(shí),在平面α內(nèi)至少有一條直線與直線l垂直,所以無(wú)論直線l與平面α具有怎樣的位置關(guān)系,在平面α內(nèi)總存在一條直線與直線l垂直.]
3.B [兩條直線都和第三條直線垂直,這兩條直線不一定平行,故選項(xiàng)A不正確;一條直線垂直于兩條平行直線中的一條,則它也垂直于另一條,故B正確;三
9、條直線相互平行,這三條直線不一定共面,如三棱柱的三條側(cè)棱所在的直線,故C不正確;三條直線相交于一點(diǎn),這三條直線不一定共面,如三棱錐的三條側(cè)棱所在的直線,故D不正確.]
4.D [如圖,在正方體ABCD-A1B1C1D1中,AD1,AB1,B1C,A1B在底面A1B1C1D1上的投影分別是A1D1,A1B1,B1C1,A1B1.因?yàn)锳1D1⊥A1B1,而AD1不垂直于AB1,故①不正確;因?yàn)锳D1⊥B1C,而A1D1∥B1C1,故②不正確;因?yàn)锳1D1與A1B1相交,而AD1與A1B異面,故③不正確;因?yàn)锳1D1∥B1C1,而AD1與B1C異面,故④不正確.]
5.B [如圖所示,取BB
10、1的中點(diǎn)M,連接ME,MF,延長(zhǎng)ME交AA1于P,延長(zhǎng)MF交CC1于Q,
∵E,F(xiàn)分別是AB1,BC1的中點(diǎn),
∴P是AA1的中點(diǎn),Q是CC1的中點(diǎn),
從而可得E是MP的中點(diǎn),F(xiàn)是MQ的中點(diǎn),∴EF∥PQ.
又PQ?平面ACC1A1,EF?平面ACC1A1,
∴EF∥平面ACC1A1.故選B.]
6.D [因?yàn)锳C⊥平面BDD1B1,
BE?平面BDD1B1,
所以AC⊥BE,故A正確;
根據(jù)線面平行的判定定理,故B正確;
因?yàn)槿忮F的底面△BEF的面積是定值,且點(diǎn)A到平面BDD1B1的距離是定值,所以其體積為定值,故C正確;
很顯然,點(diǎn)A和點(diǎn)B到EF的距離不一定是相
11、等的,故D錯(cuò)誤.]
7.A [①正確;②有可能相交,故錯(cuò)誤;③有可能異面,故錯(cuò)誤;④有可能線在面內(nèi),故錯(cuò)誤;⑤正確,因此正確命題的個(gè)數(shù)為2,故選A.]
8.C [BC⊥CC1,但BC不垂直于AC,故BC不垂直于平面ACC1A1,所以AC1與BC不垂直,故①錯(cuò)誤;
連接AF,C1F,可得AF=C1F=.
因?yàn)镕D⊥AC1,
所以可得D為線段AC1的中點(diǎn),
故②正確;
取AC的中點(diǎn)為H,連接BH,DH,
因?yàn)樵撊庵钦庵?
所以CC1⊥底面ABC,
因?yàn)锽H?底面ABC,所以CC1⊥BH,
因?yàn)榈酌鍭BC為正三角形,
可得BH⊥AC,
又AC∩CC1=C,
所
12、以BH⊥側(cè)面ACC1A1.
因?yàn)镈和H分別為AC1,AC的中點(diǎn),
所以DH∥CC1∥BF,
DH=BF=CC1,
可得四邊形BFDH為平行四邊形,所以FD∥BH,
所以可得FD⊥平面ACC1A1,
因?yàn)镕D?平面FAC1,
所以平面FAC1⊥平面ACC1A1,
故③正確;
VD-ACF=VF-ADC=·FD·S△ACD=××(×1×2)=,故④正確.故選C.]
9.30°
解析 ∵A′C′∥AC,∴AO與A′C′所成的角就是∠OAC.
∵OC?平面BB′C′C,AB⊥平面BB′C′C,
∴OC⊥AB.又OC⊥OB,AB∩BO=B,
∴OC⊥平面ABO.又AO?平面A
13、BO,
∴OC⊥OA.在Rt△AOC中,OC=,AC=,sin∠OAC==,∴∠OAC=30°.
即AO與A′C′所成角的度數(shù)為30°.
10.①③
解析 由題意得,AB∥CD,∴A,B,C,D四點(diǎn)共面,
①中,∵AC⊥β,EF?β,∴AC⊥EF,
又∵AB⊥α,EF?α,∴AB⊥EF,
∵AB∩AC=A,∴EF⊥平面ABCD,
又∵BD?平面ABCD,∴BD⊥EF,故①正確;
②中,由①可知,若BD⊥EF成立,則有EF⊥平面ABCD,則有EF⊥AC成立,而AC與α,β所成角相等無(wú)法得到EF⊥AC,故②錯(cuò)誤;
③中,由AC與CD在β內(nèi)的射影在同一條直線上可知EF⊥AC,由①
14、可知③正確;
④中,仿照②的分析過程可知④錯(cuò)誤,故答案為①③.
11.0
解析 因?yàn)閍⊥b,b⊥c,所以a與c可以相交,平行,異面,故①錯(cuò).
因?yàn)閍,b異面,b,c異面,則a,c可能異面,相交,平行,故②錯(cuò).
由a,b相交,b,c相交,則a,c可以異面,相交,平行,故③錯(cuò).
12.④
解析 連接BD,B1D1,
∵A1P=A1Q=x,
∴PQ∥B1D1∥BD∥EF,
易證PQ∥平面MEF,
又平面MEF∩平面MPQ=l,∴PQ∥l,l∥EF,
∴l(xiāng)∥平面ABCD,故①成立;
又EF⊥AC,∴l(xiāng)⊥AC,故②成立;
∵l∥EF∥BD,
∴易知直線l與平面BCC1B1不垂直,故③成立;
當(dāng)x變化時(shí),l是過點(diǎn)M且與直線EF平行的定直線,故④不成立.