2018版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.2 回歸分析學(xué)案 蘇教版選修2-3.doc
《2018版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.2 回歸分析學(xué)案 蘇教版選修2-3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.2 回歸分析學(xué)案 蘇教版選修2-3.doc(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.2 回歸分析 學(xué)習(xí)目標(biāo) 1.會(huì)建立線性回歸模型分析兩個(gè)變量間的相關(guān)關(guān)系.2.能通過(guò)相關(guān)系數(shù)判斷兩個(gè)變量間的線性相關(guān)程度.3.了解非線性回歸分析. 知識(shí)點(diǎn)一 線性回歸模型 思考 某電腦公司有5名產(chǎn)品推銷(xiāo)員,其工作年限與年推銷(xiāo)金額數(shù)據(jù)如下表: 推銷(xiāo)員編號(hào) 1 2 3 4 5 工作年限x/年 3 5 6 7 9 推銷(xiāo)金額y/萬(wàn)元 2 3 3 4 5 請(qǐng)問(wèn)如何表示推銷(xiāo)金額y與工作年限x之間的相關(guān)關(guān)系?y關(guān)于x的線性回歸方程是什么? 梳理 線性回歸模型 (1)隨機(jī)誤差 具有線性相關(guān)關(guān)系的兩個(gè)變量的取值x、y,y的值不能由x完全確定,可將x,y之間的關(guān)系表示為y=a+bx+ε,其中________是確定性函數(shù),________稱(chēng)為隨機(jī)誤差. (2)隨機(jī)誤差產(chǎn)生的主要原因 ①所用的______________不恰當(dāng)引起的誤差; ②忽略了________________; ③存在________誤差. (3)線性回歸模型中a,b值的求法 y=__________稱(chēng)為線性回歸模型. a,b的估計(jì)值為,,則 (4)回歸直線和線性回歸方程 直線=+x稱(chēng)為回歸直線,此直線方程即為線性回歸方程,稱(chēng)為_(kāi)___________,稱(chēng)為_(kāi)___________,稱(chēng)為_(kāi)_________. 知識(shí)點(diǎn)二 樣本相關(guān)系數(shù)r 具有相關(guān)關(guān)系的兩個(gè)變量的線性回歸方程=x+. 思考1 變量與真實(shí)值y一樣嗎? 思考2 變量與真實(shí)值y之間誤差大了好還是小了好? 梳理 樣本相關(guān)系數(shù)r及其性質(zhì) (1)r=________________________________. (2)r具有以下性質(zhì): ①|(zhì)r|≤________; ②|r|越接近于________,x,y的線性相關(guān)程度越強(qiáng); ③|r|越接近于________,x,y的線性相關(guān)程度越弱. 知識(shí)點(diǎn)三 對(duì)相對(duì)關(guān)系數(shù)r進(jìn)行顯著性檢驗(yàn)的基本步驟 1.________________:變量x,y不具有線性相關(guān)關(guān)系; 2.如果以95%的把握作出判斷,那么可以根據(jù)1-0.95=0.05與n-2在教材附錄2中查出一個(gè)r的臨界值r0.05(其中1-0.95=0.05稱(chēng)為檢驗(yàn)水平); 3.計(jì)算__________________; 4.作出統(tǒng)計(jì)推斷:若|r|>________,則否定H0,表明有________的把握認(rèn)為x與y之間具有線性相關(guān)關(guān)系;若|r|≤r0.05,則________________原來(lái)的假設(shè)H0,即就目前數(shù)據(jù)而言,沒(méi)有充分理由認(rèn)為y與x之間有線性相關(guān)關(guān)系. 類(lèi)型一 求線性回歸方程 例1 某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù): x 6 8 10 12 y 2 3 5 6 (1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖; (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+; (3)試根據(jù)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力. (相關(guān)公式:=,=-) 反思與感悟 (1)求線性回歸方程的基本步驟 ①列出散點(diǎn)圖,從直觀上分析數(shù)據(jù)間是否存在線性相關(guān)關(guān)系. ②計(jì)算:,,,iyi. ③代入公式求出=x+中參數(shù),的值. ④寫(xiě)出線性回歸方程并對(duì)實(shí)際問(wèn)題作出估計(jì). (2)需特別注意的是,只有在散點(diǎn)圖大致呈線性時(shí),求出的回歸方程才有實(shí)際意義,否則求出的回歸方程毫無(wú)意義. 跟蹤訓(xùn)練1 某班5名學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)缦卤恚? 學(xué)生編號(hào) 1 2 3 4 5 學(xué)科編號(hào) A B C D E 數(shù)學(xué)成績(jī)(x) 88 76 73 66 63 物理成績(jī)(y) 78 65 71 64 61 (1)畫(huà)出散點(diǎn)圖; (2)求物理成績(jī)y對(duì)數(shù)學(xué)成績(jī)x的線性回歸方程; (3)一名學(xué)生的數(shù)學(xué)成績(jī)是96,試預(yù)測(cè)他的物理成績(jī). 類(lèi)型二 線性回歸分析 例2 現(xiàn)隨機(jī)抽取了某中學(xué)高一10名在校學(xué)生,他們?nèi)雽W(xué)時(shí)的數(shù)學(xué)成績(jī)(x)與入學(xué)后第一次考試的數(shù)學(xué)成績(jī)(y)如下: 學(xué)生號(hào) 1 2 3 4 5 6 7 8 9 10 x 120 108 117 104 103 110 104 105 99 108 y 84 64 84 68 69 68 69 46 57 71 請(qǐng)問(wèn):這10名學(xué)生的兩次數(shù)學(xué)成績(jī)是否具有線性關(guān)系? 反思與感悟 相關(guān)關(guān)系的兩種判定方法及流程 (1)利用散點(diǎn)圖判定的流程 (2)利用相關(guān)系數(shù)判定的流程 ―→ 跟蹤訓(xùn)練2 一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)的零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,下表為抽樣試驗(yàn)的結(jié)果: 轉(zhuǎn)速x(轉(zhuǎn)/秒) 16 14 12 8 每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) 11 9 8 5 對(duì)變量y與x進(jìn)行線性相關(guān)性檢驗(yàn). 類(lèi)型三 非線性回歸分析 例3 下表為收集到的一組數(shù)據(jù): x 21 23 25 27 29 32 35 y 7 11 21 24 66 115 325 (1)作出x與y的散點(diǎn)圖,并猜測(cè)x與y之間的關(guān)系; (2)建立x與y的關(guān)系; (3)利用所得模型,估計(jì)當(dāng)x=40時(shí)y的值. 反思與感悟 非線性回歸問(wèn)題的處理方法 (1)指數(shù)函數(shù)型y=ebx+a ①函數(shù)y=ebx+a的圖象 ②處理方法:兩邊取對(duì)數(shù),得ln y=ln ebx+a,即ln y=bx+a.令z=ln y,把原始數(shù)據(jù)(x,y)轉(zhuǎn)化為(x,z),再根據(jù)線性回歸模型的方法求出a,b. (2)對(duì)數(shù)函數(shù)型y=bln x+a ①函數(shù)y=bln x+a的圖象: ②處理方法:設(shè)x′=ln x,原方程可化為y=bx′+a, 再根據(jù)線性回歸模型的方法求出a,b. (3)y=bx2+a型 處理方法:設(shè)x′=x2,原方程可化為y=bx′+a,再根據(jù)線性回歸模型的方法求出a,b. 跟蹤訓(xùn)練3 已知某種食品每千克的生產(chǎn)成本y(元)與生產(chǎn)該食品的重量x(千克)有關(guān),經(jīng)生產(chǎn)統(tǒng)計(jì)得到以下數(shù)據(jù): x 1 2 3 5 10 y 10.15 5.52 4.08 2.85 2.11 x 20 30 50 100 200 y 1.62 1.41 1.30 1.21 1.15 通過(guò)以上數(shù)據(jù),判斷該食品的生產(chǎn)成本y(元)與生產(chǎn)的重量x(千克)的倒數(shù)之間是否具有線性相關(guān)關(guān)系.若有,求出y關(guān)于的回歸方程,并估計(jì)一下生產(chǎn)該食品500千克時(shí)每千克的生產(chǎn)成本是多少.(精確到0.01) 1.設(shè)有一個(gè)線性回歸方程=2-1.5x,當(dāng)變量x增加1個(gè)單位時(shí),y平均________個(gè)單位. 2.如圖四個(gè)散點(diǎn)圖中,適合用線性回歸模型擬合其中兩個(gè)變量的是________.(填序號(hào)) 3.某廠節(jié)能降耗技術(shù)改造后,在生產(chǎn)A產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù)如表: x 3 4 5 6 y 2.5 t 4 4.5 根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為=0.7x+0.35,則上表中的t=________. 4.下表是x和y之間的一組數(shù)據(jù),則y關(guān)于x的回歸直線必過(guò)點(diǎn)________. x 1 2 3 4 y 1 3 5 7 5.已知x、y之間的一組數(shù)據(jù)如下表: x 0 1 2 3 y 1 3 5 7 (1)分別計(jì)算:、、x1y1+x2y2+x3y3+x4y4、x+x+x+x; (2)已知變量x與y線性相關(guān),求出回歸方程. 回歸分析的步驟 (1)確定研究對(duì)象,明確哪個(gè)變量是自變量,哪個(gè)變量是因變量; (2)畫(huà)出確定好的自變量和因變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等); (3)由經(jīng)驗(yàn)確定回歸方程的類(lèi)型(如果呈線性關(guān)系,則選用線性回歸方程=x+); (4)按一定規(guī)則估計(jì)回歸方程中的參數(shù). 答案精析 問(wèn)題導(dǎo)學(xué) 知識(shí)點(diǎn)一 思考 畫(huà)出散點(diǎn)圖,由圖可知,樣本點(diǎn)散布在一條直線附近,因此可用回歸直線表示變量之間的相關(guān)關(guān)系. 設(shè)所求的線性回歸方程為=x+, 則===0.5, =-=0.4. 所以年推銷(xiāo)金額y關(guān)于工作年限x的線性回歸方程為=0.5x+0.4. 梳理 (1)a+bx ε (2)①確定性函數(shù) ②某些因素的影響?、塾^測(cè) (3)a+bx+ε - (4)回歸截距 回歸系數(shù) 回歸值 知識(shí)點(diǎn)二 思考1 不一定. 思考2 越小越好. 梳理 (1) (2)①1?、??、? 知識(shí)點(diǎn)三 1.提出統(tǒng)計(jì)假設(shè)H0 3.樣本相關(guān)系數(shù)r 4.r0.05 95% 沒(méi)有理由拒絕 題型探究 例1 解 (1)如圖: (2)iyi=62+83+105+126=158, ==9,==4, =62+82+102+122=344, ===0.7, =-=4-0.79=-2.3, 故線性回歸方程為=0.7x-2.3. (3)由(2)中線性回歸方程可知,當(dāng)x=9時(shí),=0.79-2.3=4,預(yù)測(cè)記憶力為9的同學(xué)的判斷力約為4. 跟蹤訓(xùn)練1 解 (1)散點(diǎn)圖如圖. (2)=(88+76+73+66+63) =73.2, =(78+65+71+64+61)=67.8. iyi=8878+7665+7371+6664+6361=25 054. =882+762+732+662+632=27 174. 所以= =≈0.625. =-≈67.8-0.62573.2=22.05. 所以y對(duì)x的線性回歸方程是=0.625x+22.05. (3)當(dāng)x=96時(shí),=0.62596+22.05≈82,即可以預(yù)測(cè)他的物理成績(jī)是82. 例2 解?。?120+108+…+99+108)=107.8, =(84+64+…+57+71)=68. =1202+1082+…+992+1082 =116 584. =842+642+…+572+712=47 384. iyi=12084+10864+…+9957+10871=73 796. 所以相關(guān)系數(shù)為 r= ≈0.751. 由檢驗(yàn)水平0.05及n-2=8, 在附錄2中查得r0.05=0.632. 因?yàn)?.751>0.632, 由此可看出這10名學(xué)生的兩次數(shù)學(xué)成績(jī)具有較強(qiáng)的線性相關(guān)關(guān)系. 跟蹤訓(xùn)練2 解 由題中數(shù)據(jù)可得=12.5,=8.25, iyi=438,4 =412.5,=660,=291, 所以r= = =≈0.995. 由檢驗(yàn)水平0.05及n-2=2,在教材附錄表2中查得r0.05=0.950,因?yàn)閞>r0.05,所以y與x具有線性相關(guān)關(guān)系. 例3 解 (1)作出散點(diǎn)圖如圖,從散點(diǎn)圖可以看出x與y不具有線性相關(guān)關(guān)系,根據(jù)已有知識(shí)可以發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型函數(shù)曲線y=c1ec2x的周?chē)?,其中c1、c2為待定的參數(shù). (2)對(duì)兩邊取對(duì)數(shù)把指數(shù)關(guān)系變?yōu)榫€性關(guān)系,令z=ln y,則有變換后的樣本點(diǎn)應(yīng)分布在直線z=bx+a,a=ln c1,b=c2的周?chē)?,這樣就可以利用線性回歸模型來(lái)建立y與x之間的非線性回歸方程,數(shù)據(jù)可以轉(zhuǎn)化為 x 21 23 25 27 29 32 35 z 1.946 2.398 3.045 3.178 4.190 4.745 5.784 求得線性回歸方程為 =0.272x-3.849, ∴=e0.272x-3.849. (3)當(dāng)x=40時(shí),=e0.272x-3.849≈1 131. 跟蹤訓(xùn)練3 解 設(shè)u=,通過(guò)已知數(shù)據(jù)得到y(tǒng)與u的相應(yīng)數(shù)據(jù)為 u= 1 0.5 0.33 0.2 0.1 y 10.15 5.52 4.08 2.85 2.11 u= 0.05 0.03 0.02 0.01 0.005 y 1.62 1.41 1.30 1.21 1.15 根據(jù)上述數(shù)據(jù)可求得相關(guān)系數(shù) r= ≈0.999 8, 于是有很大的把握認(rèn)為y與具有線性相關(guān)關(guān)系. 而=≈8.973, =-≈1.126, 于是y與的回歸方程為=+1.126. 當(dāng)x=500時(shí),=+1.126≈1.14. 所以估計(jì)生產(chǎn)該食品500千克時(shí)每千克的生產(chǎn)成本是1.14元. 當(dāng)堂訓(xùn)練 1.減少1.5 2.①③ 3.3 4.(2.5,4) 5.解 (1)==1.5,==4, x1y1+x2y2+x3y3+x4y4=01+13+25+37=34, x+x+x+x=02+12+22+32=14. (2)==2, =- =4-21.5=1, 故=2x+1.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.2 回歸分析學(xué)案 蘇教版選修2-3 2018 高中數(shù)學(xué) 第三 統(tǒng)計(jì) 案例 回歸 分析 蘇教版 選修
鏈接地址:http://www.820124.com/p-6172853.html