《新編高考聯(lián)考模擬數(shù)學(xué)文試題分項(xiàng)版解析 專(zhuān)題05解析幾何原卷版 Word版缺答案》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編高考聯(lián)考模擬數(shù)學(xué)文試題分項(xiàng)版解析 專(zhuān)題05解析幾何原卷版 Word版缺答案(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1.【20xx高考新課標(biāo)1文數(shù)】直線(xiàn)l經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),若橢圓中心到l的距離為其短軸長(zhǎng)的,則該橢圓的離心率為( )
(A) (B) (C) (D)
2.【20xx高考新課標(biāo)2文數(shù)】設(shè)F為拋物線(xiàn)C:y2=4x的焦點(diǎn),曲線(xiàn)y=(k>0)與C交于點(diǎn)P,PF⊥x軸,則k=( )
(A) (B)1 (C) (D)2
3.[20xx高考新課標(biāo)Ⅲ文數(shù)]已知為坐標(biāo)原點(diǎn),是橢圓:的左焦點(diǎn),分別為的左,右頂點(diǎn).為上一點(diǎn),且軸.過(guò)點(diǎn)的直線(xiàn)與線(xiàn)段交于點(diǎn),與軸交于點(diǎn).若直
2、線(xiàn)經(jīng)過(guò)的中點(diǎn),則的離心率為( )
(A) (B) (C) (D)
4.【20xx高考四川文科】拋物線(xiàn)的焦點(diǎn)坐標(biāo)是( )
(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)
5.【20xx高考山東文數(shù)】已知圓M:截直線(xiàn)所得線(xiàn)段的長(zhǎng)度是,則圓M與圓N:的位置關(guān)系是( )
(A)內(nèi)切(B)相交(C)外切(D)相離
,所以圓與圓相交,故選B.
6.【20xx高考北京文數(shù)】圓的圓心到直線(xiàn)的距離為( )
A.1 B.2 C. D.2
7、【20xx高考上海文科】已
3、知平行直線(xiàn),則的距離_______________.
8.【20xx高考北京文數(shù)】已知雙曲線(xiàn) (,)的一條漸近線(xiàn)為,一個(gè)焦點(diǎn)為,則_______;_____________.
9.【20xx高考四川文科】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為;當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:
?若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn)A.
?單元圓上的“伴隨點(diǎn)”還在單位圓上.
?若兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),則他們的“伴隨點(diǎn)”關(guān)于y軸對(duì)稱(chēng)
④若三點(diǎn)在同一條直線(xiàn)上,則他們的“伴隨點(diǎn)”一定共線(xiàn).
其中的真命題是 .
10.[20xx高考新
4、課標(biāo)Ⅲ文數(shù)]已知直線(xiàn):與圓交于兩點(diǎn),過(guò)分別
作的垂線(xiàn)與軸交于兩點(diǎn),則_____________.
11.【20xx高考浙江文數(shù)】設(shè)雙曲線(xiàn)x2–=1的左、右焦點(diǎn)分別為F1,F(xiàn)2.若點(diǎn)P在雙曲線(xiàn)上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是_______.
12.【20xx高考浙江文數(shù)】已知,方程表示圓,則圓心坐標(biāo)是_____,半徑是______.
13.【20xx高考天津文數(shù)】已知圓C的圓心在x軸的正半軸上,點(diǎn)在圓C上,且圓心到直線(xiàn)
的距離為,則圓C的方程為_(kāi)_________.
14.【20xx高考山東文數(shù)】已知雙曲線(xiàn)E:–=1(a>0,b>0).矩形ABCD
5、的四個(gè)頂點(diǎn)在E上,AB,CD的中點(diǎn)為E的兩個(gè)焦點(diǎn),且2|AB|=3|BC|,則E的離心率是_______.
15. 【20xx高考新課標(biāo)1文數(shù)】設(shè)直線(xiàn)y=x+2a與圓C:x2+y2-2ay-2=0相交于A(yíng),B兩點(diǎn),若AB=23,則圓C的面積為 .
【名師點(diǎn)睛】注意在求圓心坐標(biāo)、半徑、弦長(zhǎng)時(shí)常用圓的幾何性質(zhì),如圓的半徑r、弦長(zhǎng)l、圓心到弦的距離d之間的關(guān)系:在求圓的方程時(shí)常常用到.
16.【20xx高考天津文數(shù)】已知雙曲線(xiàn)的焦距為,且雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn) 垂直,則雙曲線(xiàn)的方程為( )
(A) (B)
(C) (D)
17.【20xx
6、高考新課標(biāo)2文數(shù)】圓x2+y2?2x?8y+13=0的圓心到直線(xiàn)ax+y?1=0的距離為1,則a=( )
(A)? (B)? (C) (D)2
18.【20xx高考新課標(biāo)1文數(shù)】(本小題滿(mǎn)分12分)在直角坐標(biāo)系中,直線(xiàn)l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線(xiàn)C:于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱(chēng)點(diǎn)為N,連結(jié)ON并延長(zhǎng)交C于點(diǎn)H.
(I)求;
(II)除H以外,直線(xiàn)MH與C是否有其它公共點(diǎn)?說(shuō)明理由.
19.【20xx高考新課標(biāo)2文數(shù)】已知是橢圓: 的左頂點(diǎn),斜率為的直線(xiàn)交與,兩點(diǎn),點(diǎn)在上,
.
(Ⅰ)當(dāng)時(shí),求
7、的面積;
(Ⅱ)當(dāng)時(shí),證明:.
20.[20xx高考新課標(biāo)Ⅲ文數(shù)]已知拋物線(xiàn):的焦點(diǎn)為,平行于軸的兩條直線(xiàn)分別交于兩點(diǎn),交的準(zhǔn)線(xiàn)于兩點(diǎn).
(I)若在線(xiàn)段上,是的中點(diǎn),證明;
(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
21.【20xx高考北京文數(shù)】(本小題14分)
已知橢圓C:過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(I)求橢圓C的方程及離心率;
(Ⅱ)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線(xiàn)PA與y軸交于點(diǎn)M,直線(xiàn)PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
22.【20xx高考山東文數(shù)】(本小題滿(mǎn)分14分)
已知橢圓C:x2a2+y2b2=1(a>b>0)
8、的長(zhǎng)軸長(zhǎng)為4,焦距為22.
(I)求橢圓C的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線(xiàn)交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線(xiàn)段PN的中點(diǎn).過(guò)點(diǎn)P作x軸的垂線(xiàn)交C于另一點(diǎn)Q,延長(zhǎng)線(xiàn)QM交C于點(diǎn)B.
(i)設(shè)直線(xiàn)PM、QM的斜率分別為k、k',證明k'k為定值.
(ii)求直線(xiàn)AB的斜率的最小值.
23.【20xx高考天津文數(shù)】(設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中 為原點(diǎn),為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于點(diǎn)(不在軸上),垂直于的直線(xiàn)與交于點(diǎn),與軸交于點(diǎn),若,且,求直線(xiàn)的斜率.
24.【20xx高考浙江文數(shù)】(本題
9、滿(mǎn)分15分)如圖,設(shè)拋物線(xiàn)的焦點(diǎn)為F,拋物線(xiàn)上的點(diǎn)A到y(tǒng)軸的距離等于|AF|-1.
(I)求p的值;
(II)若直線(xiàn)AF交拋物線(xiàn)于另一點(diǎn)B,過(guò)B與x軸平行的直線(xiàn)和過(guò)F與AB垂直的直線(xiàn)交于點(diǎn)N,AN與x
軸交于點(diǎn)M.求M的橫坐標(biāo)的取值范圍.
25.【20xx高考上海文科】(本題滿(mǎn)分14分)
有一塊正方形菜地,所在直線(xiàn)是一條小河,收貨的蔬菜可送到點(diǎn)或河邊運(yùn)走。于是,菜地分為兩個(gè)區(qū)域和,其中中的蔬菜運(yùn)到河邊較近,中的蔬菜運(yùn)到點(diǎn)較近,而菜地內(nèi)和的分界線(xiàn)上的點(diǎn)到河邊與到點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn)為的中點(diǎn),點(diǎn)的坐標(biāo)為(1,0),如圖
(1) 求菜地內(nèi)的分界線(xiàn)的方程
10、(2) 菜農(nóng)從蔬菜運(yùn)量估計(jì)出面積是面積的兩倍,由此得到面積的“經(jīng)驗(yàn)值”為。設(shè)是上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以為一邊、另一邊過(guò)點(diǎn)的矩形的面積,及五邊形的面積,并判斷哪一個(gè)更接近于面積的經(jīng)驗(yàn)值
26.【20xx高考上海文科】(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
雙曲線(xiàn)的左、右焦點(diǎn)分別為F1、F2,直線(xiàn)l過(guò)F2且與雙曲線(xiàn)交于A(yíng)、B兩點(diǎn).
(1)若l的傾斜角為 ,是等邊三角形,求雙曲線(xiàn)的漸近線(xiàn)方程;
(2)設(shè),若l的斜率存在,且|AB|=4,求l的斜率.
27.【20xx高考四川文科】(本小題滿(mǎn)分13分)
已知橢圓E:的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三
11、角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O且斜率為的直線(xiàn)l與橢圓E交于不同的兩點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為M,直線(xiàn)OM與橢圓E交于C,D,證明:.
第二部分 20xx優(yōu)質(zhì)模擬試題
1.【20xx湖北優(yōu)質(zhì)高中聯(lián)考】若是2和8的等比中項(xiàng),則圓錐曲線(xiàn)的離心率是( ?。?
A. B. C.或 D.或
2. 【20xx湖南六校聯(lián)考】已知分別為橢圓的左、右頂點(diǎn),不同兩點(diǎn)在橢圓上,且關(guān)于軸對(duì)稱(chēng),設(shè)直線(xiàn)的斜率分別為,則當(dāng)取最小值時(shí),橢圓的離心率為( )
A. B. C. D.
3. 【20xx安徽合肥第一次質(zhì)
12、檢】存在實(shí)數(shù),使得圓面恰好覆蓋函數(shù) 圖象的最高點(diǎn)或最低點(diǎn)共三個(gè),則正數(shù)的取值范圍是___________.
4. 【20xx安徽江南十校聯(lián)考】已知是雙曲線(xiàn)的一條漸近線(xiàn),是上的一點(diǎn),是的兩個(gè)焦點(diǎn),若,則到軸的距離為
(A) (B) (C) (D)
5. 【20xx河北石家莊質(zhì)檢二】已知直線(xiàn)與雙曲線(xiàn)的兩條漸近線(xiàn)分別交于, 兩點(diǎn),若的中點(diǎn)在該雙曲線(xiàn)上,為坐標(biāo)原點(diǎn),則的面積為( ?。?
A. B. C. D.
6. 【20xx湖南師大附中等四校聯(lián)考】若拋物線(xiàn)的準(zhǔn)線(xiàn)經(jīng)過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),則_____.
7.【20xx江西南昌一
13、?!恳阎獟佄锞€(xiàn)C:x2 =4y的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為1的直線(xiàn)與拋物線(xiàn)相交于M,N兩點(diǎn).設(shè)直線(xiàn)l是拋物線(xiàn)C的切線(xiàn),且l∥MN,P為l上一點(diǎn),則的最小值為_(kāi)__________.
8.【20xx江西師大附中、鷹潭一中一聯(lián)】已知拋物線(xiàn)C的標(biāo)準(zhǔn)方程為,M為拋物線(xiàn)C上一動(dòng)點(diǎn),為其對(duì)稱(chēng)軸上一點(diǎn),直線(xiàn)MA與拋物線(xiàn)C的另一個(gè)交點(diǎn)為N.當(dāng)A為拋物線(xiàn)C的焦點(diǎn)且直線(xiàn)MA與其對(duì)稱(chēng)軸垂直時(shí),△MON的面積為18.
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)記,若t值與M點(diǎn)位置無(wú)關(guān),則稱(chēng)此時(shí)的點(diǎn)A為“穩(wěn)定點(diǎn)”,試求出所有“穩(wěn)定點(diǎn)”,若沒(méi)有,請(qǐng)說(shuō)明理由.
9.【20xx廣東廣州綜合測(cè)試一】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線(xiàn)與橢圓交于,兩點(diǎn),直線(xiàn),分別與軸交于點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.