《新版浙江版高考數(shù)學(xué)一輪復(fù)習(xí)(講練測(cè)): 專題4.4 三角函數(shù)的圖象與性質(zhì)練》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版浙江版高考數(shù)學(xué)一輪復(fù)習(xí)(講練測(cè)): 專題4.4 三角函數(shù)的圖象與性質(zhì)練(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
第04節(jié) 三角函數(shù)的圖象與性質(zhì)
A 基礎(chǔ)鞏固訓(xùn)練
1. 函數(shù)f(x)=3sin(x2-π4),x∈R的最小正周期為( )
A. π2 B. π C. 2π D. 4π
【答案】D
【解析】試題分析:由周期公式知:T=2π|ω|=2π|12|=4π
2. 設(shè)函數(shù)的圖象關(guān)于直線對(duì)稱,它的最
小正周期為,則( )
A.的圖象過點(diǎn)
3、 B.在上是減函數(shù)
C.的一個(gè)對(duì)稱中心是 D.的一個(gè)對(duì)稱中心是
【答案】C
【解析】根據(jù)題意可知,,根據(jù)題中所給的角的范圍,結(jié)合圖像關(guān)于直線對(duì)稱,可知,故可以得到,而的值不確定,所以的值不確定,所以A項(xiàng)不正確,當(dāng)時(shí),,函數(shù)不是單調(diào)的,所以B項(xiàng)不對(duì),而,所以不是函數(shù)的對(duì)稱中心,故D不對(duì),而又,所以是函數(shù)的對(duì)稱中心,故選C.
3. 已知函數(shù)的圖象過點(diǎn),則的圖象的一個(gè)對(duì)稱中心是
A. B. C. D.
【答案】B
【解析】因?yàn)楹瘮?shù)的圖象過點(diǎn),所以,且,則;令,即,即的圖象的一個(gè)對(duì)稱中心是.
4.【20
4、xx山東,文7】函數(shù) 最小正周期為
A. B. C. D.
【答案】C
【解析】因?yàn)?所以其周期,故選C.
5. 已知函數(shù)是定義在上的偶函數(shù),則 的最小正周期是( )
A.6π B.5π C.4π D.2π
【答案】A
【解析】∵函數(shù)是定義在上的偶函數(shù),∴,
∴,∴,∴.
B能力提升訓(xùn)練
1. 函數(shù)的圖象大致為( )
【答案】A
【解析】根據(jù)題
5、意,函數(shù)為奇函數(shù),所以圖像關(guān)于原點(diǎn)對(duì)稱,故排除兩項(xiàng),在上,函數(shù)值是正值,所以不對(duì),故只能選A.
2.下列函數(shù)中,最小正周期為,且圖象關(guān)于直線對(duì)稱的是 ( )
A. B.
C. D.
【答案】B
【解析】最小正周期為,但圖象不關(guān)于直線對(duì)稱;最小正周期為,且圖象關(guān)于直線對(duì)稱;最小正周期為,但圖象不關(guān)于直線對(duì)稱;最小正周期為4,且圖象關(guān)于直線對(duì)稱;因此選B.
3. 若函數(shù),且,的最小值是,則的單調(diào)遞增區(qū)間是( )
A. B.
C. D.
【答案】D
【解析】由,的最小值是可知,
6、所以,所以,由,得,所以函數(shù)的單調(diào)遞增區(qū)間為,故選D.
4. 函數(shù)的圖像與函數(shù)的圖像( )
A.有相同的對(duì)稱軸但無相同的對(duì)稱中心
B.有相同的對(duì)稱中心但無相同的對(duì)稱軸
C.既有相同的對(duì)稱軸但也有相同的對(duì)稱中心
D.既無相同的對(duì)稱中心也無相同的對(duì)稱軸
【答案】A
【解析】當(dāng)時(shí), ,因此的對(duì)稱軸是.
當(dāng)即時(shí), ,因此的對(duì)稱軸是.由此可得, 的對(duì)稱軸都是的對(duì)稱軸 .
當(dāng)時(shí), ,所以的對(duì)稱中心是.
當(dāng)時(shí),所以的對(duì)稱中心是.由此可得,它們的對(duì)稱中心均不相同.故選 A .
5. 已知,函數(shù)在上單調(diào)遞減,則的取值范圍是( )
A. B. C.
7、 D.
【答案】D
【解析】由題意可得函數(shù)的周期,再由,即,可得的一個(gè)減區(qū)間為,所以,求得的取值范圍是.
C思維擴(kuò)展訓(xùn)練
1. 已知函數(shù)的圖象上關(guān)于軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)的取值范圍是( )
(A) (B) (C) (D)
【答案】A
【解析】原函數(shù)在軸左側(cè)是一段正弦型函數(shù)圖象,在軸右側(cè)是一條對(duì)數(shù)函數(shù)的圖象,要使得圖象上關(guān)于軸對(duì)稱的點(diǎn)至少有對(duì),可將左側(cè)的圖象對(duì)稱到軸右側(cè),即,應(yīng)該與原來軸右側(cè)的圖象至少有個(gè)公共點(diǎn)
如圖,不能滿足條件,只有
此時(shí),只需在時(shí),的縱坐標(biāo)大于,即,得.
2.已知函數(shù),若,則的取值范圍為( )
A.
8、 B.
C. D.
【答案】B
【解析】,若,等價(jià)于,所以,,解得,.
3. 若,定義一種運(yùn)算:,已知 ,
,且點(diǎn),在函數(shù)的圖象上運(yùn)動(dòng),點(diǎn)在函數(shù)的圖象上運(yùn)動(dòng),且(其中O為坐標(biāo)原點(diǎn)),則函數(shù)的最大值A(chǔ)和最小正周期T分別為( )
A. B.
C. D.
【答案】D
【解析】由條件,所以 ,從而求得,
.
4. 已知函數(shù),將的圖像向左平移個(gè)單位得到函數(shù)的圖像,則函數(shù)的單調(diào)減區(qū)間為( )
A. B.
C. D.
9、
【答案】B
【解析】,求單調(diào)減區(qū)間時(shí)令
5. 給出下列結(jié)論:
①若扇形的中心角為2,半徑為1,則該扇形的面積為1;②函數(shù)是偶函數(shù);③點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心;④函數(shù)在上是減函數(shù).其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】解答:
對(duì)于①,扇形的中心角為2,半徑為1,
則該扇形的面積為S=αR2=×2×12=1,①正確;
對(duì)于②,函數(shù)=cos2x(x∈R),它是偶函數(shù),②正確;
對(duì)于③,當(dāng)x=時(shí),y=sin(2×+)=?1,
點(diǎn)(,0)不是函數(shù)y=sin(2x+)圖象的一個(gè)對(duì)稱中心,③錯(cuò)誤;
對(duì)于④,函數(shù)y=cosx?sinx=cos(x+),
當(dāng)x∈時(shí),x+∈[,],∴y是減函數(shù),④正確,
綜上,正確的命題序號(hào)是①②④,共3個(gè)。
故選:C.