《新編高考數(shù)學文科總復習【第二章】函數(shù)、導數(shù)及其應用 第十四節(jié)》由會員分享,可在線閱讀,更多相關《新編高考數(shù)學文科總復習【第二章】函數(shù)、導數(shù)及其應用 第十四節(jié)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、新編高考數(shù)學復習資料
第十四節(jié) 導數(shù)在研究函數(shù)中的應用(二)
[來源:]
基礎自測
1.
(2012·合肥質檢)函數(shù)f(x)的圖象如圖所示,則不等式(x+3)·f′(x)<0的解集為( )
A.(1,+∞)
B.(-∞,-3)
C.(-∞,-1)∪(1,+∞)[來源:數(shù)理化網(wǎng)]
D.(-∞,-3)∪(-1,1)
解析:由不等式(x+3)f′(x)<0得或觀察圖象可知,x<-3或-1
2、x0=( )
A.0 B.2 C.-2 D.3
解析:f′(x)=3x2-6x=3x(x-2),當x<0時,f′(x)>0,當0<x<2時,f′(x)<0,當x>2時,f′(x)>0,故當x=2時取得極小值.故選B.
答案:B
3.(2012·大連雙基測試)函數(shù)f(x)=(x2-2x)ex的最小值為f(x0),則x0=________.
解析:f′(x)=(2x-2)ex+(x2-2x)ex=(x2-2)ex,令f′(x)=0,得x=±.當x∈(-,)時,f′(x)<0;當x∈(,+∞)時,f′(x)>0.∴x=時,f(x)取得極小值,又f(-)
3、>0,且x<-時,f(x)>0.∴在x=時取得最小值.所以當x=時,函數(shù)有最小值.
答案:
4.(2013·南寧聯(lián)考)已知函數(shù)f(x)=x3-3ax-a在(0,1)內有最小值,則a的取值范圍是________.
解析:f′(x)=3x2-3a=3(x2-a),顯然a>0,f′(x)=3(x+)(x-),由已知條件0<<1,解得0<a<1.
答案:(0,1)[來源:]
1.(2012·浙江卷)設a>0,b>0,( )
A.若2a+2a=2b+3b,則a>b
B.若2a+2a=2b+3b,則ab
D.若2a-2a
4、=2b-3b,則a2b+2b.構造函數(shù):f(x)=2x+2x,則f′(x)=2x·ln 2+2>0恒成立,故有函數(shù)f(x)=2x+2x在(0,+∞)上單調遞增,即a>b成立.其余選項用同樣方法排除.故選A.
答案:A
2.(2013·廣東卷)設函數(shù)f(x)=(x-1)ex-kx2(其中k∈R).
(1) 當k=1時,求函數(shù)f(x)的單調區(qū)間;
(2) 當k∈時,求函數(shù)f(x)在[0,k]上的最大值M.
解析:(1) 當k=1時,f(x)=(x-1)ex-x2,
f′(x)=ex+(x-1)ex-2x=x
5、ex-2x=x(ex-2),
令f′(x)=0,得x1=0,x2=ln 2,
當x變化時,f′(x),f(x)的變化如下表:
x
(-∞,0)
0[來源:]
(0,ln 2)
ln 2
(ln 2,+∞)
f′(x)[來源:]
+
0
-
0
+
f(x)
極大值
極小值
上表可知,函數(shù)f(x)的遞減區(qū)間為(0,ln 2),遞增區(qū)間為(-∞,0),(ln 2,+∞).
(2)f′(x)=ex+(x-1)ex-2kx=xex-2kx=x(ex-2k),令f′(x)=0,得x1=0,x2=ln (2k),
令g(k)=ln (2k)-k
6、,則g′(k)=-1=>0,所以g(k)在上遞增,
所以g(k)≤ln 2-1=ln 2-ln e<0,從而ln (2k)<k,所以ln (2k)∈[0,k]
所以當x∈(0,ln (2k))時,f′(x)<0;當x∈(ln (2k),+∞)時,f′(x)>0;
所以M=max{f(0),f(k)}=max{-1,(k-1)ek-k3};
令h(k)=(k-1)ek-k3+1,則h′(k)=k(ek-3k)令φ(k)=ek-3k,則φ′(k)=ek-3<e-3<0,
所以φ(k)在上遞減,而φ ·φ(1)=·(e-3)<0,
所以存在x0∈使得φ(x0)=0,且當k∈時,φ(k)>
7、0,當k∈(x0,1)時,φ(k)<0,
所以φ(k)在上單調遞增,在(x0,1)上單調遞減.
因為h=-+>0,h(1)=0,所以h(k)≥0在上恒成立,當且僅當k=1時取得“=”.
綜上,函數(shù)f(x)在[0,k]上的最大值M=(k-1)ek-k3.
1.(2012·廣東金山一中等三校考前測試)函數(shù)y=在區(qū)間(0,1)上( )
A.是減函數(shù) B.是增函數(shù)
C.有極小值 D.有極大值
解析:∵f′(x)=,x∈(0,1)和x∈(1,e)時,f′(x)<0;x=e時,f′(x)=0;x∈(e,+∞)時,f′(x)>0.∴在區(qū)間x∈(0,1),f
8、(x)是減函數(shù),x=e時有極小值f(e)=e.故選A.
答案:A
2.(2013·東莞二模)已知函數(shù)f(x)=ax2-2x+ln x.
(1)若f(x)無極值點,但其導函數(shù)f′(x)有零點,求a的值;
(2)若f(x)有兩個極值點,求a的取值范圍,并證明f(x)的極小值小于-.
解析:(1)首先,x>0時,f′(x)=2ax-2+=,
f′(x)有零點而f(x)無極值點,表明該零點左右f′(x)同號,故a≠0,且2ax2-2x+1=0的Δ=0.由此可得a=.
(2)由題意,2ax2-2x+1=0有兩個不同的正根,故Δ>0,a>0.解得:0<a<;
設2ax2-2x+1=0的兩根為x1,x2,不妨設x1<x2,
因為在區(qū)間(0,x1),(x2,+∞)上,f′(x)>0,
而在區(qū)間(x1,x2)上,f′(x)<0,故x2是f(x)的極小值點.
因在區(qū)間(x1,x2)上f(x)是減函數(shù),如能證明f<-,則更有f(x2)<-,
由韋達定理,=,f=a2-2+ln =ln -·,
令=t,其中設g(t)=ln t-t+,
利用導數(shù)容易證明g(t)當t>1時單調遞減,而g(1)=0,
所以g(t)=ln t- t+<0,
因此f<-,
從而有f(x)的極小值f(x2)<-.