2019-2020年人教版高中數(shù)學(xué)必修三教案:3-3-1 幾何概型.doc
《2019-2020年人教版高中數(shù)學(xué)必修三教案:3-3-1 幾何概型.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)必修三教案:3-3-1 幾何概型.doc(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)必修三教案:3-3-1 幾何概型 項(xiàng)目 內(nèi)容 課題 3.3.1 幾何概型 (共 1 課時(shí)) 修改與創(chuàng)新 教學(xué) 目標(biāo) 1.通過(guò)師生共同探究,體會(huì)數(shù)學(xué)知識(shí)的形成,正確理解幾何概型的概念;掌握幾何概型的概率公式: P(A)=,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)來(lái)解決問(wèn)題,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力. 2.本節(jié)課的主要特點(diǎn)是隨機(jī)試驗(yàn)多,學(xué)習(xí)時(shí)養(yǎng)成勤學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)習(xí)慣,會(huì)根據(jù)古典概型與幾何概型的區(qū)別與聯(lián)系來(lái)判別某種概型是古典概型還是幾何概型,會(huì)進(jìn)行簡(jiǎn)單的幾何概率計(jì)算,培養(yǎng)學(xué)生從有限向無(wú)限探究的意識(shí). 教學(xué)重、 難點(diǎn) 教學(xué)重點(diǎn):理解幾何概型的定義、特點(diǎn),會(huì)用公式計(jì)算幾何概率. 教學(xué)難點(diǎn):等可能性的判斷與幾何概型和古典概型的區(qū)別. 教學(xué) 準(zhǔn)備 多媒體課件 教學(xué)過(guò)程 導(dǎo)入新課 思路1 復(fù)習(xí)古典概型的兩個(gè)基本特點(diǎn):(1)所有的基本事件只有有限個(gè);(2)每個(gè)基本事件發(fā)生都是等可能的.那么對(duì)于有無(wú)限多個(gè)試驗(yàn)結(jié)果的情況相應(yīng)的概率應(yīng)如何求呢?為此我們學(xué)習(xí)幾何概型,教師板書本節(jié)課題幾何概型. 思路2 下圖中有兩個(gè)轉(zhuǎn)盤,甲、乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時(shí),甲獲勝,否則乙獲勝.在兩種情況下分別求甲獲勝的概率是多少? 為解決這個(gè)問(wèn)題,我們學(xué)習(xí)幾何概型. 思路3 在概率論發(fā)展的早期,人們就已經(jīng)注意到只考慮那種僅有有限個(gè)等可能結(jié)果的隨機(jī)試驗(yàn)是不夠的,還必須考慮有無(wú)限多個(gè)試驗(yàn)結(jié)果的情況.例如一個(gè)人到單位的時(shí)間可能是8:00至9:00之間的任何一個(gè)時(shí)刻;往一個(gè)方格中投一個(gè)石子,石子可能落在方格中的任何一點(diǎn)……這些試驗(yàn)可能出現(xiàn)的結(jié)果都是無(wú)限多個(gè).這就是我們要學(xué)習(xí)的幾何概型. 推進(jìn)新課 新知探究 提出問(wèn)題 (1)隨意拋擲一枚均勻硬幣兩次,求兩次出現(xiàn)相同面的概率? (2)試驗(yàn)1.取一根長(zhǎng)度為3 m的繩子,拉直后在任意位置剪斷.問(wèn)剪得兩段的長(zhǎng)都不小于1 m的概率有多大? 試驗(yàn)2.射箭比賽的箭靶涂有五個(gè)彩色得分環(huán).從外向內(nèi)為白色,黑色,藍(lán)色,紅色,靶心是金色.金色靶心叫“黃心”.奧運(yùn)會(huì)的比賽靶面直徑為122 cm,靶心直徑為12.2 cm.運(yùn)動(dòng)員在70 m外射箭.假設(shè)射箭都能射中靶面內(nèi)任何一點(diǎn)都是等可能的.問(wèn)射中黃心的概率為多少? (3)問(wèn)題(1)(2)中的基本事件有什么特點(diǎn)?兩事件的本質(zhì)區(qū)別是什么? (4)什么是幾何概型?它有什么特點(diǎn)? (5)如何計(jì)算幾何概型的概率?有什么樣的公式? (6)古典概型和幾何概型有什么區(qū)別和聯(lián)系? 活動(dòng):學(xué)生根據(jù)問(wèn)題思考討論,回顧古典概型的特點(diǎn),把問(wèn)題轉(zhuǎn)化為學(xué)過(guò)的知識(shí)解決,教師引導(dǎo)學(xué)生比較概括. 討論結(jié)果:(1)硬幣落地后會(huì)出現(xiàn)四種結(jié)果:分別記作(正,正)、(正,反)、(反,正)、(反,反).每種結(jié)果出現(xiàn)的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.兩次出現(xiàn)相同面的概率為. (2)經(jīng)分析,第一個(gè)試驗(yàn),從每一個(gè)位置剪斷都是一個(gè)基本事件,剪斷位置可以是長(zhǎng)度為3 m的繩子上的任意一點(diǎn). 第二個(gè)試驗(yàn)中,射中靶面上每一點(diǎn)都是一個(gè)基本事件,這一點(diǎn)可以是靶面直徑為122 cm的大圓內(nèi)的任意一點(diǎn). 在這兩個(gè)問(wèn)題中,基本事件有無(wú)限多個(gè),雖然類似于古典概型的“等可能性”,但是顯然不能用古典概型的方法求解. 考慮第一個(gè)問(wèn)題,如右圖,記“剪得兩段的長(zhǎng)都不小于1 m”為事件A.把繩子三等分,于是當(dāng)剪斷位置處在中間一段上時(shí),事件A發(fā)生.由于中間一段的長(zhǎng)度等于繩長(zhǎng)的, 于是事件A發(fā)生的概率P(A)=. 第二個(gè)問(wèn)題,如右圖,記“射中黃心”為事件B,由于中靶心隨機(jī)地落在面積為π1222 cm2的大圓內(nèi),而當(dāng)中靶點(diǎn)落在面積為π12.22 cm2的黃心內(nèi)時(shí),事件B發(fā)生,于是事件B發(fā)生的概率P(B)==0.01. (3)硬幣落地后會(huì)出現(xiàn)四種結(jié)果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,繩子從每一個(gè)位置剪斷都是一個(gè)基本事件,剪斷位置可以是長(zhǎng)度為3 m的繩子上的任意一點(diǎn),也是等可能的,射中靶面內(nèi)任何一點(diǎn)都是等可能的,但是硬幣落地后只出現(xiàn)四種結(jié)果,是有限的;而剪斷繩子的點(diǎn)和射中靶面的點(diǎn)是無(wú)限的;即一個(gè)基本事件是有限的,而另一個(gè)基本事件是無(wú)限的. (4)幾何概型. 對(duì)于一個(gè)隨機(jī)試驗(yàn),我們將每個(gè)基本事件理解為從某個(gè)特定的幾何區(qū)域內(nèi)隨機(jī)地取一點(diǎn),該區(qū)域中的每一個(gè)點(diǎn)被取到的機(jī)會(huì)都一樣,而一個(gè)隨機(jī)事件的發(fā)生則理解為恰好取到上述區(qū)域內(nèi)的某個(gè)指定區(qū)域中的點(diǎn).這里的區(qū)域可以是線段、平面圖形、立體圖形等.用這種方法處理隨機(jī)試驗(yàn),稱為幾何概型. 如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型(geometric models of probability),簡(jiǎn)稱幾何概型. 幾何概型的基本特點(diǎn): a.試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè); b.每個(gè)基本事件出現(xiàn)的可能性相等. (5)幾何概型的概率公式: P(A)=. (6)古典概型和幾何概型的聯(lián)系是每個(gè)基本事件的發(fā)生都是等可能的;區(qū)別是古典概型的基本事件是有限的,而幾何概型的基本事件是無(wú)限的,另外兩種概型的概率計(jì)算公式的含義也不同. 應(yīng)用示例 思路1 例1 判斷下列試驗(yàn)中事件A發(fā)生的概率是古典概型,還是幾何概型. (1)拋擲兩顆骰子,求出現(xiàn)兩個(gè)“4點(diǎn)”的概率; (2)如下圖所示,圖中有一個(gè)轉(zhuǎn)盤,甲、乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時(shí),甲獲勝,否則乙獲勝,求甲獲勝的概率. 活動(dòng):學(xué)生緊緊抓住古典概型和幾何概型的區(qū)別和聯(lián)系,然后判斷. 解:(1)拋擲兩顆骰子,出現(xiàn)的可能結(jié)果有66=36種,且它們都是等可能的,因此屬于古典概型; (2)游戲中指針指向B區(qū)域時(shí)有無(wú)限多個(gè)結(jié)果,而且不難發(fā)現(xiàn)“指針落在陰影部分”,概率可以用陰影部分的面積與總面積的比來(lái)衡量,即與區(qū)域長(zhǎng)度有關(guān),因此屬于幾何概型. 點(diǎn)評(píng):本題考查的是幾何概型與古典概型的特點(diǎn),古典概型具有有限性和等可能性.而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度有關(guān). 例2 某人午休醒來(lái),發(fā)覺表停了,他打開收音機(jī)想聽電臺(tái)整點(diǎn)報(bào)時(shí),求他等待的時(shí)間短于10分鐘的概率. 活動(dòng):學(xué)生分析,教師引導(dǎo),假設(shè)他在0—60之間的任一時(shí)刻,打開收音機(jī)是等可能的,但0—60之間有無(wú)數(shù)個(gè)時(shí)刻,不能用古典概型的公式來(lái)計(jì)算隨機(jī)事件發(fā)生的概率,因?yàn)樗?—60之間的任一時(shí)刻打開收音機(jī)是等可能的,所以他在哪個(gè)時(shí)間段打開收音機(jī)的概率只與該時(shí)間段的長(zhǎng)度有關(guān),而與該時(shí)間段的位置無(wú)關(guān),這符合幾何概型的條件,所以可用幾何概型的概率計(jì)算公式計(jì)算. 解:記“等待的時(shí)間小于10分鐘”為事件A,打開收音機(jī)的時(shí)刻位于[50,60]時(shí)間段內(nèi)則事件A發(fā)生.由幾何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待報(bào)時(shí)的時(shí)間不超過(guò)10分鐘”的概率為1/6. 打開收音機(jī)的時(shí)刻X是隨機(jī)的,可以是0—60之間的任何時(shí)刻,且是等可能的.我們稱X服從[0,60]上的均勻分布,X稱為[0,60]上的均勻隨機(jī)數(shù). 變式訓(xùn)練 某路公共汽車5分鐘一班準(zhǔn)時(shí)到達(dá)某車站,求任一人在該車站等車時(shí)間少于3分鐘的概率(假定車到來(lái)后每人都能上). 解:可以認(rèn)為人在任一時(shí)刻到站是等可能的.設(shè)上一班車離站時(shí)刻為a,則某人到站的一切可能時(shí)刻為Ω=(a,a+5),記Ag={等車時(shí)間少于3分鐘},則他到站的時(shí)刻只能為g=(a+2,a+5)中的任一時(shí)刻,故P(Ag)=. 點(diǎn)評(píng):通過(guò)實(shí)例初步體會(huì)幾何概型的意義. 思路2 例1 某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時(shí)一班,求此人等車時(shí)間不多于20分鐘的概率. 活動(dòng):假設(shè)他在0—60分鐘之間任何一個(gè)時(shí)刻到車站等車是等可能的,但在0到60分鐘之間有無(wú)窮多個(gè)時(shí)刻,不能用古典概型公式計(jì)算隨機(jī)事件發(fā)生的概率.可以通過(guò)幾何概型的求概率公式得到事件發(fā)生的概率.因?yàn)榭蛙嚸啃r(shí)一班,他在0到60分鐘之間任何一個(gè)時(shí)刻到站等車是等可能的,所以他在哪個(gè)時(shí)間段到站等車的概率只與該時(shí)間段的長(zhǎng)度有關(guān),而與該時(shí)間段的位置無(wú)關(guān),這符合幾何概型的條件. 解:設(shè)A={等待的時(shí)間不多于10分鐘},我們所關(guān)心的事件A恰好是到站等車的時(shí)刻位于[40,60]這一時(shí)間段內(nèi),因此由幾何概型的概率公式,得P(A)=(60-40)/60=1/3. 即此人等車時(shí)間不多于10分鐘的概率為1/3. 點(diǎn)評(píng):在本例中,到站等車的時(shí)刻X是隨機(jī)的,可以是0到60之間的任何一刻,并且是等可能的,我們稱X服從[0,60]上的均勻分布,X為[0,60]上的均勻隨機(jī)數(shù). 變式訓(xùn)練 在1萬(wàn)平方千米的海域中有40平方千米的大陸架儲(chǔ)藏著石油,假設(shè)在海域中任意一點(diǎn)鉆探,鉆到油層面的概率是多少? 分析:石油在1萬(wàn)平方千米的海域大陸架的分布可以看作是隨機(jī)的,而40平方千米可看作構(gòu)成事件的區(qū)域面積,由幾何概型公式可以求得概率. 解:記“鉆到油層面”為事件A,則P(A)=0.004. 答:鉆到油層面的概率是0.004. 例2 小明家的晚報(bào)在下午5:30—6:30之間任何一個(gè)時(shí)間隨機(jī)地被送到,小明一家人在下午6:00—7:00之間的任何一個(gè)時(shí)間隨機(jī)地開始晚餐.則晚報(bào)在晚餐開始之前被送到的概率是多少? 活動(dòng):學(xué)生讀題,設(shè)法利用幾何概型公式求得概率. 解:建立平面直角坐標(biāo)系,如右圖中x=6,x=7,y=5.5,y=6.5圍成一個(gè)正方形區(qū)域G.設(shè)晚餐在x(6≤x≤7)時(shí)開始,晚報(bào)在y(5.5≤y≤6.5)時(shí)被送到,這個(gè)結(jié)果與平面上的點(diǎn)(x,y)對(duì)應(yīng).于是試驗(yàn)的所有可能結(jié)果就與G中的所有點(diǎn)一一對(duì)應(yīng). 由題意知,每一個(gè)試驗(yàn)結(jié)果出現(xiàn)的可能性是相同的,因此,試驗(yàn)屬于幾何概型.晚報(bào)在晚餐開始之前被送到,當(dāng)且僅當(dāng)y- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教版高中數(shù)學(xué)必修三教案:3-3-1 幾何概型 2019 2020 年人教版 高中數(shù)學(xué) 必修 教案 幾何
鏈接地址:http://www.820124.com/p-6222294.html