中考數(shù)學(xué)試卷分類(lèi)匯編 等邊三角形
《中考數(shù)學(xué)試卷分類(lèi)匯編 等邊三角形》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《中考數(shù)學(xué)試卷分類(lèi)匯編 等邊三角形(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、等邊三角形 1、(2013涼山州)如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊長(zhǎng)的正方形ACEF的周長(zhǎng)為( ?。? A.14 B.15 C.16 D.17 考點(diǎn):菱形的性質(zhì);等邊三角形的判定與性質(zhì);正方形的性質(zhì). 分析:根據(jù)菱形得出AB=BC,得出等邊三角形ABC,求出AC,長(zhǎng),根據(jù)正方形的性質(zhì)得出AF=EF=EC=AC=4,求出即可. 解答:解:∵四邊形ABCD是菱形, ∴AB=BC, ∵∠B=60°, ∴△ABC是等邊三角形, ∴AC=AB=4, ∴正方形ACEF的周長(zhǎng)是AC+CE+EF+AF=4×4=16, 故選C. 點(diǎn)評(píng):本題考查了菱形性質(zhì),
2、正方形性質(zhì),等邊三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出AC的長(zhǎng). 2、(2013?自貢)如圖,將一張邊長(zhǎng)為3的正方形紙片按虛線(xiàn)裁剪后,恰好圍成一個(gè)底面是正三角形的棱柱,這個(gè)棱柱的側(cè)面積為( ?。? A. B. 9 C. D. 考點(diǎn): 剪紙問(wèn)題;展開(kāi)圖折疊成幾何體;等邊三角形的性質(zhì). 專(zhuān)題: 操作型. 分析: 這個(gè)棱柱的側(cè)面展開(kāi)正好是一個(gè)長(zhǎng)方形,長(zhǎng)為3,寬為3減去兩個(gè)三角形的高,再用長(zhǎng)方形的面積公式計(jì)算即可解答. 解答: 解:∵將一張邊長(zhǎng)為3的正方形紙片按虛線(xiàn)裁剪后,恰好圍成一個(gè)底面是正三角形的棱柱, ∴這個(gè)正三角形的底面邊長(zhǎng)為1,高為=
3、, ∴側(cè)面積為長(zhǎng)為3,寬為3﹣的長(zhǎng)方形,面積為9﹣3. 故選A. 點(diǎn)評(píng): 此題主要考查了剪紙問(wèn)題的實(shí)際應(yīng)用,動(dòng)手操作拼出圖形,并能正確進(jìn)行計(jì)算是解答本題的關(guān)鍵. 3、(2013?雅安)如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有( )個(gè). A. 2 B. 3 C. 4 D. 5 考點(diǎn): 正方形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 分析: 通過(guò)條件可以得出
4、△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和2S△ABE再通過(guò)比較大小就可以得出結(jié)論 解答: 解:∵四邊形ABCD是正方形, ∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°. ∵△AEF等邊三角形, ∴AE=EF=AF,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt△ABE和Rt△ADF中, , Rt△ABE≌Rt△ADF(HL), ∴BE=DF,①正確.
5、 ∠BAE=∠DAF, ∴∠DAF+∠DAF=30°, 即∠DAF=15°②正確, ∵BC=CD, ∴BC﹣BE=CD﹣DF, 及CE=CF, ∵AE=AF, ∴AC垂直平分EF.③正確. 設(shè)EC=x,由勾股定理,得 EF=x,CG=x,AG=x, ∴AC=, ∴AB=, ∴BE=﹣x=, ∴BE+DF=x﹣x≠x,④錯(cuò)誤, ∵S△CEF=, S△ABE==, ∴2S△ABE==S△CEF,⑤正確. 綜上所述,正確的有4個(gè),故選C. 點(diǎn)評(píng): 本題考查了正方形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等邊三角形的性質(zhì)的運(yùn)用,三角形的面
6、積公式的運(yùn)用,解答本題時(shí)運(yùn)用勾股定理的性質(zhì)解題時(shí)關(guān)鍵. 4、(2013?十堰)如圖,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,則下底BC的長(zhǎng)為( ?。? A. 8 B. 9 C. 10 D. 11 考點(diǎn): 等腰梯形的性質(zhì);等邊三角形的判定與性質(zhì). 分析: 首先構(gòu)造直角三角形,進(jìn)而根據(jù)等腰梯形的性質(zhì)得出∠B=60°,BF=EC,AD=EF=5,求出BF即可. 解答: 解:過(guò)點(diǎn)A作AF⊥BC于點(diǎn)F,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E, ∵梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°, ∴∠B=60°,BF=EC
7、,AD=EF=5, ∴cos60°===, 解得:BF=1.5, 故EC=1.5, ∴BC=1.5+1.5+5=8. 故選:A. 點(diǎn)評(píng): 此題主要考查了等腰梯形的性質(zhì)以及解直角三角形等知識(shí),根據(jù)已知得出BF=EC的長(zhǎng)是解題關(guān)鍵. 5、(2013?牡丹江)如圖,在△ABC中∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是( ?。? A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè) 考點(diǎn): 相似三角形的
8、判定與性質(zhì);等邊三角形的判定;直角三角形斜邊上的中線(xiàn). 分析: 根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可判斷①正確; 先證明△ABM∽△ACN,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②正確; 先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷③正確; 當(dāng)∠ABC=45°時(shí),∠BCN=45°,由P為BC邊的中點(diǎn),得出BN=PB=PC,判斷
9、④正確. 解答: 解:①∵BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn), ∴PM=BC,PN=BC, ∴PM=PN,正確; ②在△ABM與△ACN中, ∵∠A=∠A,∠AMB=∠ANC=90°, ∴△ABM∽△ACN, ∴,正確; ③∵∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N, ∴∠ABM=∠ACN=30°, 在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°, ∵點(diǎn)P是BC的中點(diǎn),BM⊥AC,CN⊥AB, ∴PM=PN=PB=PC, ∴∠BPN=2∠BCN,∠CPM=2∠CBM, ∴∠BPN+∠CPM=2(∠BCN+∠
10、CBM)=2×60°=120°, ∴∠MPN=60°, ∴△PMN是等邊三角形,正確; ④當(dāng)∠ABC=45°時(shí),∵CN⊥AB于點(diǎn)N, ∴∠BNC=90°,∠BCN=45°, ∴BN=CN, ∵P為BC邊的中點(diǎn), ∴PN⊥BC,△BPN為等腰直角三角形 ∴BN=PB=PC,正確. 故選D. 點(diǎn)評(píng): 本題主要考查了直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵. 6、(2013?遵義)如圖,將邊長(zhǎng)為1cm的等邊三角形ABC沿直線(xiàn)l向右翻動(dòng)(不
11、滑動(dòng)),點(diǎn)B從開(kāi)始到結(jié)束,所經(jīng)過(guò)路徑的長(zhǎng)度為( ) A. cm B. (2+π)cm C. cm D. 3cm 考點(diǎn): 弧長(zhǎng)的計(jì)算;等邊三角形的性質(zhì);旋轉(zhuǎn)的性質(zhì). 分析: 通過(guò)觀察圖形,可得從開(kāi)始到結(jié)束經(jīng)過(guò)兩次翻動(dòng),求出點(diǎn)B兩次劃過(guò)的弧長(zhǎng),即可得出所經(jīng)過(guò)路徑的長(zhǎng)度. 解答: 解:∵△ABC是等邊三角形, ∴∠ACB=60°, ∴∠AC(A)=120°, 點(diǎn)B兩次翻動(dòng)劃過(guò)的弧長(zhǎng)相等, 則點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng)=2×=π. 故選C. 點(diǎn)評(píng): 本題考查了弧長(zhǎng)的計(jì)算,解答本題的關(guān)鍵是仔細(xì)觀察圖形,得到點(diǎn)B運(yùn)動(dòng)的路徑,注意熟練掌握弧長(zhǎng)的計(jì)算公式.
12、 7、(2013臺(tái)灣、23)附圖為正三角形ABC與正方形DEFG的重迭情形,其中D、E兩點(diǎn)分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點(diǎn)到AC的距離為何?( ?。? A.2 B.3 C.12﹣4 D.6﹣6 考點(diǎn):正方形的性質(zhì);等邊三角形的性質(zhì). 分析:過(guò)點(diǎn)B作BH⊥AC于H,交GF于K,根據(jù)等邊三角形的性質(zhì)求出∠A=∠ABC=60°,然后判定△BDE是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出∠BDE=60°,然后根據(jù)同位角相等,兩直線(xiàn)平行求出AC∥DE,再根據(jù)正方形的對(duì)邊平行得到DE∥GF,從而求出AC∥DE∥GF,再根據(jù)等邊三角形的邊的與高的關(guān)系表示出KH,然后
13、根據(jù)平行線(xiàn)間的距離相等即可得解. 解答:解:如圖,過(guò)點(diǎn)B作BH⊥AC于H,交GF于K, ∵△ABC是等邊三角形, ∴∠A=∠ABC=60°, ∵BD=BE, ∴△BDE是等邊三角形, ∴∠BDE=60°, ∴∠A=∠BDE, ∴AC∥DE, ∵四邊形DEFG是正方形,GF=6, ∴DE∥GF, ∴AC∥DE∥GF, ∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6, ∴F點(diǎn)到AC的距離為6﹣6. 故選D. 點(diǎn)評(píng):本題考查了正方形的對(duì)邊平行,四條邊都相等的性質(zhì),等邊三角形的判定與性質(zhì),等邊三角形的高線(xiàn)等于邊長(zhǎng)的倍,以及平行線(xiàn)間的距離相等的性質(zhì),綜合題,但難度不大,熟
14、記各圖形的性質(zhì)是解題的關(guān)鍵. 8、(2013菏澤)我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線(xiàn)叫做該平面圖形的“面線(xiàn)”,“面線(xiàn)”被這個(gè)平面圖形截得的線(xiàn)段叫做該圖形的“面徑”(例如圓的直徑就是它的“面徑”).已知等邊三角形的邊長(zhǎng)為2,則它的“面徑”長(zhǎng)可以是 ,(或介于和之間的任意兩個(gè)實(shí)數(shù))?。▽?xiě)出1個(gè)即可). 考點(diǎn):等邊三角形的性質(zhì). 專(zhuān)題:新定義;開(kāi)放型. 分析:根據(jù)等邊三角形的性質(zhì), (1)最長(zhǎng)的面徑是等邊三角形的高線(xiàn); (2)最短的面徑平行于三角形一邊,最長(zhǎng)的面徑為等邊三角形的高,然后根據(jù)相似三角形面積的比等于相似比的平方求出最短面徑. 解答:解:如圖, (1)
15、等邊三角形的高AD是最長(zhǎng)的面徑, AD=×2=; (2)當(dāng)EF∥BC時(shí),EF為最短面徑, 此時(shí),()2=, 即=, 解得EF=. 所以,它的面徑長(zhǎng)可以是,(或介于和之間的任意兩個(gè)實(shí)數(shù)). 故答案為:,(或介于和之間的任意兩個(gè)實(shí)數(shù)). 點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),讀懂題意,弄明白面徑的定義,并準(zhǔn)確判斷出等邊三角形的最短與最長(zhǎng)的面徑是解題的關(guān)鍵. 9、(2013?鐵嶺)如圖,在△ABC中,AB=2,BC=3.6,∠B=60°,將△ABC繞點(diǎn)A按順時(shí)針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在BC邊上時(shí),則CD的長(zhǎng)為 1.6?。? 考點(diǎn): 旋轉(zhuǎn)的性
16、質(zhì). 分析: 由將△ABC繞點(diǎn)A按順時(shí)針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案. 解答: 解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB, ∵∠B=60°, ∴△ABD是等邊三角形, ∴BD=AB, ∵AB=2,BC=3.6, ∴CD=BC﹣BD=3.6﹣2=1.6. 故答案為:1.6. 點(diǎn)評(píng): 此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡(jiǎn)單,注意掌握旋轉(zhuǎn)前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用. 10、(2013?宜昌)如圖,點(diǎn)E,F(xiàn)分別是
17、銳角∠A兩邊上的點(diǎn),AE=AF,分別以點(diǎn)E,F(xiàn)為圓心,以AE的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D,連接DE,DF. (1)請(qǐng)你判斷所畫(huà)四邊形的性狀,并說(shuō)明理由; (2)連接EF,若AE=8厘米,∠A=60°,求線(xiàn)段EF的長(zhǎng). 考點(diǎn): 菱形的判定與性質(zhì);等邊三角形的判定與性質(zhì). 分析: (1)由AE=AF=ED=DF,根據(jù)四條邊都相等的四邊形是菱形,即可證得:四邊形AEDF是菱形; (2)首先連接EF,由AE=AF,∠A=60°,可證得△EAF是等邊三角形,則可求得線(xiàn)段EF的長(zhǎng). 解答: 解:(1)菱形. 理由:∵根據(jù)題意得:AE=AF=ED=DF, ∴四邊形AEDF是菱
18、形; (2)連接EF, ∵AE=AF,∠A=60°, ∴△EAF是等邊三角形, ∴EF=AE=8厘米. 點(diǎn)評(píng): 此題考查了菱形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡(jiǎn)單,注意掌握輔助線(xiàn)的作法,注意數(shù)形結(jié)合思想的應(yīng)用. 11、(2013?天津)如圖,在邊長(zhǎng)為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長(zhǎng)為 7 . 考點(diǎn): 相似三角形的判定與性質(zhì);等邊三角形的性質(zhì). 分析: 先根據(jù)邊長(zhǎng)為9,BD=3,求出CD的長(zhǎng)度,然后根據(jù)∠ADE=60°和等邊三角形的性質(zhì),證明△ABD∽△DCE,進(jìn)而根據(jù)相似三角形的對(duì)應(yīng)邊成比例,求得CE的長(zhǎng)度,
19、即可求出AE的長(zhǎng)度. 解答: 解:∵△ABC是等邊三角形, ∴∠B=∠C=60°,AB=BC; ∴CD=BC﹣BD=9﹣3=6; ∴∠BAD+∠ADB=120° ∵∠ADE=60°, ∴∠ADB+∠EDC=120°, ∴∠DAB=∠EDC, 又∵∠B=∠C=60°, ∴△ABD∽△DCE, 則=, 即=, 解得:CE=2, 故AE=AC﹣CE=9﹣2=7. 故答案為:7. 點(diǎn)評(píng): 此題主要考查了相似三角形的判定和性質(zhì)以及等邊三角形的性質(zhì),根據(jù)等邊三角形的性質(zhì)證得△ABD∽△DCE是解答此題的關(guān)鍵. 12、(2013聊城)如圖,在等邊△ABC中,AB=6,
20、D是BC的中點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,那么線(xiàn)段DE的長(zhǎng)度為 . 考點(diǎn):旋轉(zhuǎn)的性質(zhì);等邊三角形的判定與性質(zhì). 分析:首先,利用等邊三角形的性質(zhì)求得AD=3;然后根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD. 解答:解:如圖,∵在等邊△ABC中,∠B=60°,AB=6,D是BC的中點(diǎn), ∴AD⊥BD,∠BAD=∠CAD=30°, ∴AD=ABcos30°=6×=3. 根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠DAB=30°,AD=AE, ∴∠DAE=∠EAC+∠BAD=60°, ∴△ADE的等邊三角形, ∴DE=AD=3,即線(xiàn)段DE的長(zhǎng)
21、度為3. 故答案是:3. 點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì).旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等. 13、(2013? 德州)如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+. 其中正確的序號(hào)是 ①②④?。ò涯阏J(rèn)為正確的都填上). 考點(diǎn): 正方形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 分析: 根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)
22、系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)線(xiàn)段垂直平分線(xiàn)的知識(shí)可以判斷③的正確,利用解三角形求正方形的面積等知識(shí)可以判斷④的正誤. 解答: 解:∵四邊形ABCD是正方形, ∴AB=AD, ∵△AEF是等邊三角形, ∴AE=AF, ∵在Rt△ABE和Rt△ADF中, , ∴Rt△ABE≌Rt△ADF(HL), ∴BE=DF, ∵BC=DC, ∴BC﹣BE=CD﹣DF, ∴CE=CF, ∴①說(shuō)法正確; ∵CE=CF, ∴△ECF是等腰直角三角形, ∴∠CEF=45°, ∵∠AEF=60°, ∴∠AEB=75°, ∴②說(shuō)法正確; 如圖,連接AC,交EF于
23、G點(diǎn), ∴AC⊥EF,且AC平分EF, ∵∠CAD≠∠DAF, ∴DF≠FG, ∴BE+DF≠EF, ∴③說(shuō)法錯(cuò)誤; ∵EF=2, ∴CE=CF=, 設(shè)正方形的邊長(zhǎng)為a, 在Rt△ADF中, a2+(a﹣)2=4, 解得a=, 則a2=2+, S正方形ABCD=2+, ④說(shuō)法正確, 故答案為①②④. 點(diǎn)評(píng): 本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線(xiàn)的正確作法,此題難度不大,但是有一點(diǎn)麻煩. 14、(2013?黃岡)已知△ABC為等邊三角形,BD為中線(xiàn),延長(zhǎng)BC至E,使CE=CD=1,連接DE,則DE= ?。?/p>
24、 考點(diǎn): 等邊三角形的性質(zhì);等腰三角形的判定與性質(zhì).3481324 分析: 根據(jù)等腰三角形和三角形外角性質(zhì)求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可. 解答: 解:∵△ABC為等邊三角形, ∴∠ABC=∠ACB=60°,AB=BC, ∵BD為中線(xiàn), ∴∠DBC=∠ABC=30°, ∵CD=CE, ∴∠E=∠CDE, ∵∠E+∠CDE=∠ACB, ∴∠E=30°=∠DBC, ∴BD=DE, ∵BD是AC中線(xiàn),CD=1, ∴AD=DC=1, ∵△ABC是等邊三角形, ∴BC=AC=1+1=2,BD⊥AC, 在Rt△△BDC中,
25、由勾股定理得:BD==, 即DE=BD=, 故答案為:. 點(diǎn)評(píng): 本題考查了等邊三角形性質(zhì),勾股定理,等腰三角形性質(zhì),三角形的外角性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是求出DE=BD和求出BD的長(zhǎng). 15、(2013?黔西南州)如圖,已知△ABC是等邊三角形,點(diǎn)B、C、D、E在同一直線(xiàn)上,且CG=CD,DF=DE,則∠E= 15 度. 考點(diǎn): 等邊三角形的性質(zhì);三角形的外角性質(zhì);等腰三角形的性質(zhì). 分析: 根據(jù)等邊三角形三個(gè)角相等,可知∠ACB=60°,根據(jù)等腰三角形底角相等即可得出∠E的度數(shù). 解答: 解:∵△ABC是等邊三角形, ∴∠ACB=60°,∠ACD=120
26、°, ∵CG=CD, ∴∠CDG=30°,∠FDE=150°, ∵DF=DE, ∴∠E=15°. 故答案為:15. 點(diǎn)評(píng): 本題考查了等邊三角形的性質(zhì),互補(bǔ)兩角和為180°以及等腰三角形的性質(zhì),難度適中. 16、(2013年廣東湛江)如圖,所有正三角形的一邊平行于軸,一頂點(diǎn)在軸上.從內(nèi)到外,它們的邊長(zhǎng)依次為,頂點(diǎn)依次用表示,其中與軸、底邊與、與、均相距一個(gè)單位,則頂點(diǎn)的坐標(biāo)是 ,的坐標(biāo)是 . 解析:考查正三角形的相關(guān)知識(shí)及找規(guī)律的能力。由圖知,的縱坐標(biāo)為: ,,而的橫坐標(biāo)為:,由題意知,的縱坐標(biāo)為,,容易發(fā)現(xiàn)、、、、、這些點(diǎn)在第四象限,
27、橫縱坐標(biāo)互為相反數(shù), 、、、、、的下標(biāo)2、5、7、、92、有規(guī)律:,是第31個(gè)正三角形(從里往外)的右端點(diǎn), 17、(2013福省福州19)如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過(guò)平移或軸對(duì)稱(chēng)或旋轉(zhuǎn)都可以得到△OBD. (1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長(zhǎng)度;△AOC與△BOD關(guān)于直線(xiàn)對(duì)稱(chēng),則對(duì)稱(chēng)軸是 ;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是 度; (2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù). 考點(diǎn):旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì);軸對(duì)稱(chēng)的性質(zhì);平移
28、的性質(zhì). 專(zhuān)題:計(jì)算題. 分析:(1)由點(diǎn)A的坐標(biāo)為(﹣2,0),根據(jù)平移的性質(zhì)得到△AOC沿x軸向右平移2個(gè)單位得到△OBD,則△AOC與△BOD關(guān)于y軸對(duì)稱(chēng);根據(jù)等邊三角形的性質(zhì)得∠AOC=∠BOD=60°,則∠AOD=120°,根據(jù)旋轉(zhuǎn)的定義得△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB; (2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以O(shè)E為等腰△AOD的頂角的平分線(xiàn),根據(jù)等腰三角形的性質(zhì)得到OE垂直平分AD,則∠AEO=90°. 解答:解:(1)∵點(diǎn)A的坐標(biāo)為(﹣2,0), ∴△AOC沿x軸向右平移2個(gè)單位得到△OBD; ∴△
29、AOC與△BOD關(guān)于y軸對(duì)稱(chēng); ∵△AOC為等邊三角形, ∴∠AOC=∠BOD=60°, ∴∠AOD=120°, ∴△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB. (2)如圖,∵等邊△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB, ∴OA=OD, ∵∠AOC=∠BOD=60°, ∴∠DOC=60°, 即OE為等腰△AOD的頂角的平分線(xiàn), ∴OE垂直平分AD, ∴∠AEO=90°. 故答案為2;y軸;120. 點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)段的夾角等于旋轉(zhuǎn)角.也考查了等邊三角形的性質(zhì)、軸對(duì)稱(chēng)的性質(zhì)
30、以及平移的性質(zhì). 18、(2013?湖州)如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB. (1)求BC的長(zhǎng); (2)求證:PB是⊙O的切線(xiàn). 考點(diǎn): 切線(xiàn)的判定;等邊三角形的判定與性質(zhì);垂徑定理. 分析: (1)首先連接OB,由弦AB⊥OC,劣弧AB的度數(shù)為120°,易證得△OBC是等邊三角形,則可求得BC的長(zhǎng); (2)由OC=CP=2,△OBC是等邊三角形,可求得BC=CP,即可得∠P=∠CBP,又由等邊三角形的性質(zhì),∠OBC=60°,∠CBP=30°,則可證得OB⊥BP,繼而證得PB是⊙O的切線(xiàn).
31、解答: (1)解:連接OB, ∵弦AB⊥OC,劣弧AB的度數(shù)為120°, ∴弧BC與弧AC的度數(shù)為:60°, ∴∠BOC=60°, ∵OB=OC, ∴△OBC是等邊三角形, ∴BC=OC=2; (2)證明:∵OC=CP,BC=OC, ∴BC=CP, ∴∠CBP=∠CPB, ∵△OBC是等邊三角形, ∴∠OBC=∠OCB=60°, ∴∠CBP=30°, ∴∠OBP=∠CBP+∠OBC=90°, ∴OB⊥BP, ∵點(diǎn)B在⊙O上, ∴PB是⊙O的切線(xiàn). 點(diǎn)評(píng): 此題考查了切線(xiàn)的判定、等邊三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).此題難度適中,注意掌握輔助線(xiàn)
32、的作法,注意數(shù)形結(jié)合思想的應(yīng)用. 19、(2013?萊蕪)如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE. (1)證明DE∥CB; (2)探索AC與AB滿(mǎn)足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形. 考點(diǎn): 平行四邊形的判定;全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 分析: (1)首先連接CE,根據(jù)直角三角形的性質(zhì)可得CE=AB=AE,再根據(jù)等邊三角形的性質(zhì)可得AD=CD,然后證明△ADE≌△CDE,進(jìn)而得到∠ADE=∠CDE=30°,再有∠DCB=150°可證明DE∥CB; (2)當(dāng)AC=或AB=2AC時(shí),四
33、邊形DCBE是平行四邊形.若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°進(jìn)而得到∠B=30°,再根據(jù)三角函數(shù)可推出AC=或AB=2AC. 解答: (1)證明:連結(jié)CE. ∵點(diǎn)E為Rt△ACB的斜邊AB的中點(diǎn), ∴CE=AB=AE. ∵△ACD是等邊三角形, ∴AD=CD. 在△ADE與△CDE中,, ∴△ADE≌△CDE(SSS), ∴∠ADE=∠CDE=30°. ∵∠DCB=150°, ∴∠EDC+∠DCB=180°. ∴DE∥CB. (2)解:∵∠DCB=150°,若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°.
34、∴∠B=30°. 在Rt△ACB中,sinB=,sin30°=,AC=或AB=2AC. ∴當(dāng)AC=或AB=2AC時(shí),四邊形DCBE是平行四邊形. 點(diǎn)評(píng): 此題主要考查了平行線(xiàn)的判定、全等三角形的判定與性質(zhì),以及平行四邊形的判定,關(guān)鍵是掌握直角三角形的性質(zhì),以及等邊三角形的性質(zhì). 20、(2013?衢州)【提出問(wèn)題】 (1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN. 【類(lèi)比探究】 (2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線(xiàn)上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)
35、論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由. 【拓展延伸】 (3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由. 考點(diǎn): 相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 分析: (1)利用SAS可證明△BAM≌△CAN,繼而得出結(jié)論; (2)也可以通過(guò)證明△BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣. (3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到=,根據(jù)∠BAM=∠BAC
36、﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結(jié)論. 解答: (1)證明:∵△ABC、△AMN是等邊三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∵在△BAM和△CAN中, ∴△BAM≌△CAN(SAS), ∴∠ABC=∠ACN. (2)解:結(jié)論∠ABC=∠ACN仍成立. 理由如下:∵△ABC、△AMN是等邊三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∵在△BAM和△CAN中, ∴△BAM≌△CAN(SAS), ∴∠ABC=∠ACN. (3)解:∠ABC=∠ACN. 理由如下:∵BA=BC,MA=MN,頂角∠ABC=∠AMN, ∴底角∠BAC=∠MAN, ∴△ABC∽△AMN, ∴=, 又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC, ∴∠BAM=∠CAN, ∴△BAM∽△CAN, ∴∠ABC=∠ACN. 點(diǎn)評(píng): 本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細(xì)觀察圖形,找到全等(相似)的條件,利用全等(相似)的性質(zhì)證明結(jié)論. 24 學(xué)習(xí)是一件快樂(lè)的事情,大家下載后可以自行修改
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 資產(chǎn)評(píng)估價(jià)值目標(biāo)
- 高考地理總復(fù)習(xí)-資源跨區(qū)域調(diào)配ppt課件
- 脊柱疾病診療技術(shù)課件
- 小學(xué)生校園安全篇課件
- 《釣魚(yú)的啟示》課件(1)
- 硫和氮的的化合物教學(xué)ppt課件
- 英美法律制度(雙語(yǔ))第一章-案例閱讀技巧
- 材料ppt課件材料成型工程第四講軋制過(guò)程中的縱變形
- 八年級(jí)數(shù)學(xué)下冊(cè)第十九章一次函數(shù)-人教版課件
- 第6章 一般年金與保險(xiǎn)函數(shù)
- 產(chǎn)科課程演示胎兒健康評(píng)估技術(shù)-教學(xué)課件
- 鄉(xiāng)鎮(zhèn)應(yīng)急演練的基
- 人教版高一物理必修第一冊(cè)第一章:運(yùn)動(dòng)快慢的描述—速度課件
- 新滬科版九年級(jí)物理全冊(cè)第一節(jié)電阻和變阻器課件
- 成熟和衰老生理