《2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)4 演繹推理 新人教A版選修1 -2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)4 演繹推理 新人教A版選修1 -2.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)分層作業(yè)(四) 演繹推理
(建議用時(shí):40分鐘)
[基礎(chǔ)達(dá)標(biāo)練]
一、選擇題
1.“所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電”這種推理方法屬于( )
A.演繹推理 B.類比推理
C.合情推理 D.歸納推理
A [大前提為所有金屬都能導(dǎo)電,小前提是金屬,結(jié)論為鐵能導(dǎo)電,故選A.]
2.已知在△ABC中,∠A=30,∠B=60,求證:BC
BC,CD是AB邊上的高,求證:∠ACD>∠BCD”.
證明:在△ABC中 ,
因?yàn)镃D⊥AB,AC>BC, ①
所以AD>BD,②
于是∠ACD>∠BCD. ③
則在上面證明的過程中錯(cuò)誤的是________.(只填序號(hào))
③ [由AD>BD,得到∠ACD>∠BCD的推理的大前提應(yīng)是“在同一三角形中,大邊對(duì)大角”,小前提是“AD>BD”,而AD與BD不在同一三角形中,故③錯(cuò)誤.]
8.已知函數(shù)f(x)=a-,若f(x)為奇函數(shù),則a=________.
【導(dǎo)學(xué)號(hào):48662065】
[因?yàn)槠婧瘮?shù)f(x)在x=0處有定義且f(0)=0(大前提),而奇函數(shù)f(x)=a-的定義域?yàn)镽(小前提),所以f(0)=a-=0(結(jié)論).解得a=.]
三、解答題
9.S為△ABC所在平面外一點(diǎn),SA⊥平面ABC,平面SAB⊥平面SBC.求證:AB⊥BC.
[證明] 如圖,作AE⊥SB于E.
∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB.AE?平面SAB.
∴AE⊥平面SBC,
又BC?平面SBC.
∴AE⊥BC.又∵SA⊥平面ABC,
∴SA⊥BC.
∵SA∩AE=A,SA?平面SAB,AE?平面SAB,
∴BC⊥平面SAB.
∵AB?平面SAB.∴AB⊥BC.
10.已知a,b,m均為正實(shí)數(shù),b<a,用三段論形式證明<.
[證明] 因?yàn)椴坏仁絻蛇呁艘砸粋€(gè)正數(shù),不等號(hào)不改變方向,(大前提)
b<a,m>0,(小前提)
所以mb<ma.(結(jié)論)
因?yàn)椴坏仁絻蛇呁由弦粋€(gè)數(shù),不等號(hào)不改變方向,(大前提)
mb<ma,(小前提)
所以mb+ab<ma+ab,即b(a+m)<a(b+m).(結(jié)論)
因?yàn)椴坏仁絻蛇呁砸粋€(gè)正數(shù),不等號(hào)不改變方向,(大前提)
b(a+m)<a(b+m),a(a+m)>0,(小前提)
所以<,即<.(結(jié)論)
[能力提升練]
1.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故某奇數(shù)(S)是3的倍數(shù)(P).”上述推理是( )
【導(dǎo)學(xué)號(hào):48662066】
A.小前提錯(cuò) B.結(jié)論錯(cuò)
C.正確的 D.大前提錯(cuò)
C [由三段論推理概念知推理正確.]
2.下面幾種推理中是演繹推理的是( )
A.因?yàn)閥=2x是指數(shù)函數(shù),所以函數(shù)y=2x經(jīng)過定點(diǎn)(0,1)
B.猜想數(shù)列,,,…的通項(xiàng)公式為an=(n∈N*)
C.由“平面內(nèi)垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D.由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測(cè)空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2
A [A為演繹推理,這里省略了大前提,B為歸納推理,C,D為類比推理.]
3.以下推理中,錯(cuò)誤的序號(hào)為________.
【導(dǎo)學(xué)號(hào):48662067】
①∵ab=ac,∴b=c;
②∵a≥b,b>c,∴a>c;
③∵75不能被2整除,∴75是奇數(shù);
④∵a∥b,b⊥平面α,∴a⊥α.
① [當(dāng)a=0時(shí),ab=ac,但b=c未必成立.]
4.已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任意m,n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1)給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正確結(jié)論為________.
(1)(2)(3) [由條件可知,
因?yàn)閒(m,n+1)=f(m,n)+2,且f(1,1)=1,
所以f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9.
又因?yàn)閒(m+1,1)=2f(m,1),
所以f(5,1)=2f(4,1)=22f(3,1)=23f(2,1)=24f(1,1)=16,
所以f(5,6)=f(5,1)+10=16+10=26.
故(1)(2)(3)均正確.]
5.在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)證明:數(shù)列{an-n}是等比數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和Sn.
(3)證明:不等式Sn+1≤4Sn,對(duì)任意n∈N*皆成立.
【導(dǎo)學(xué)號(hào):48662068】
[解] (1)證明:因?yàn)閍n+1=4an-3n+1,
所以an+1-(n+1)=4(an-n),n∈N*.
又a1-1=1,所以數(shù)列{an-n}是首項(xiàng)為1,且公比為4的等比數(shù)列.
(2)由(1)可知an-n=4n-1,于是數(shù)列{an}的通項(xiàng)公式為an=4n-1+n.
所以數(shù)列{an}的前n項(xiàng)和Sn=+.
(3)證明:對(duì)任意的n∈N*, Sn+1-4Sn=+-4=-(3n2+n-4)≤0.
所以不等式Sn+1≤4Sn,對(duì)任意n∈N*皆成立.
鏈接地址:http://www.820124.com/p-6290814.html