《數(shù)學(xué)人教B版新導(dǎo)學(xué)同步選修23課時(shí)訓(xùn)練: 15離散型隨機(jī)變量的方差 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)人教B版新導(dǎo)學(xué)同步選修23課時(shí)訓(xùn)練: 15離散型隨機(jī)變量的方差 Word版含解析(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)訓(xùn)練 15 離散型隨機(jī)變量的方差
(限時(shí):10分鐘)
1.若X~B(n,p),且E(X)=1.6,D(X)=1.28,則( )
A.n=8,p=0.2 B.n=4,p=0.4
C.n=5,p=0.32 D.n=7,p=0.45
解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.
答案:A
2.設(shè)一隨機(jī)試驗(yàn)的結(jié)果只有A和,且P(A)=m,令隨機(jī)變量ξ=則ξ的方差D(ξ)等于( )
A.m B.2m(1-m)
C.m(m-1) D.m(1-m)
解析:隨機(jī)變量ξ
2、的分布列為:
ξ
0
1
P
1-m
m
所以E(ξ)=0·(1-m)+1·m=m.
所以D(ξ)=(0-m)2·(1-m)+(1-m)2·m=m(1-m).
答案:D
3.已知隨機(jī)變量ξ,D(ξ)=,則ξ的標(biāo)準(zhǔn)差為_(kāi)_________.
解析:= =.
答案:
4.有兩臺(tái)自動(dòng)包裝機(jī)甲與乙,包裝質(zhì)量分別為隨機(jī)變量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),則自動(dòng)包裝機(jī)__________的質(zhì)量較好.
解析:均值僅體現(xiàn)了隨機(jī)變量取值的平均大小,如果兩個(gè)隨機(jī)變量的均值相等,還要看隨機(jī)變量的取值如何在均值周?chē)兓?,方差大說(shuō)明隨機(jī)變量取值較分散;
3、方差小,說(shuō)明取值較集中,故乙的質(zhì)量較好.
答案:乙
5.2013年4月20日8時(shí)02分四川省雅安市蘆山縣(北緯30.3°,東經(jīng)103.0°)發(fā)生7.0級(jí)地震.一方有難,八方支援,重慶眾多醫(yī)務(wù)工作者和志愿者加入了抗災(zāi)救援行動(dòng).其中重慶某醫(yī)院外科派出由5名骨干醫(yī)生組成的救援小組,奔赴受災(zāi)第一線參與救援.現(xiàn)將這5名醫(yī)生分別隨機(jī)分配到受災(zāi)最嚴(yán)重的蘆山、寶山、天全縣中的某一個(gè).
若將隨機(jī)分配到蘆山縣的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列、期望和方差.
解析:由條件可知,ξ~B,
故P(ξ=i)=Ci5-i,(i=0,1,2,…,5)
故ξ的分布列為
ξ
0
1
2
3
4
5
P
4、
所以E(ξ)=np=5×=,
D(ξ)=np(1-p)=5××=.
(限時(shí):30分鐘)
一、選擇題
1.?dāng)S一枚質(zhì)地均勻的骰子12次,則出現(xiàn)向上一面是3的次數(shù)的均值和方差分別是( )
A.2和5 B.2和
C.4和 D.和1
解析:由題意知變量符合二項(xiàng)分布,擲一次骰子相當(dāng)于做一次獨(dú)立重復(fù)試驗(yàn),且發(fā)生的概率是,所以E(ξ)=12×=2,D(ξ)=12××=.
答案:B
2.有甲、乙兩種水稻,測(cè)得每種水稻各10株的分蘗數(shù)據(jù),計(jì)算出樣本方差分別為D(X甲)=11,D(X乙)=3.4,由此可以估計(jì)( )
A.甲種水稻比乙種水稻分蘗整齊
B.乙種
5、水稻比甲種水稻分蘗整齊
C.甲、乙兩種水稻分蘗整齊程度相同
D.甲、乙兩種水稻分蘗整齊不能比較
解析:∵D(X甲)>D(X乙),
∴乙種水稻比甲種水稻整齊.
答案:B
3.設(shè)二項(xiàng)分布B(n,p)的隨機(jī)變量X的均值與方差分別是2.4和1.44,則二項(xiàng)分布的參數(shù)n,p的值為( )
A.n=4,p=0.6 B.n=6,p=0.4
C.n=8,p=0.3 D.n=24,p=0.1
解析:由題意得,np=2.4,np(1-p)=1.44,
∴1-p=0.6,∴p=0.4,n=6.
答案:B
4.若隨機(jī)變量X的分布列如下表所示,已知E(X)=1.6,則a-b=( )
X
6、
0
1
2
3
P
0.1
a
b
0.1
A.0.2 B.0.1
C.-0.2 D.-0.4
解析:根據(jù)題意,得
解得所以a-b=-0.2.
答案:C
5.D(ξ-D(ξ))的值為( )
A.0 B.1
C.D(ξ) D.2D(ξ)
解析:因?yàn)镈(ξ)是一個(gè)常數(shù),而常數(shù)的方差等于零,所以D(ξ-D(ξ))=D(ξ)-0=D(ξ).
答案:C
二、填空題
6.從學(xué)校乘汽車(chē)到火車(chē)站的途中有3個(gè)交通崗,假設(shè)在各個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是,設(shè)X為途中遇到紅燈的次數(shù),則隨機(jī)變量X的方差為_(kāi)_________.
解析
7、:∵X~B,∴D(X)=3××=.
答案:
7.某班有學(xué)生40人,將其數(shù)學(xué)期中考試成績(jī)平均分為兩組,第一組的平均分為80分,標(biāo)準(zhǔn)差為4,第二組的平均分為90分,標(biāo)準(zhǔn)差為6,則此班40名學(xué)生的數(shù)學(xué)期中考試成績(jī)平均分為_(kāi)_________;方差為_(kāi)_________.
解析:成績(jī)平均分為85,方差為51.
答案:85 51
8.一次數(shù)學(xué)測(cè)驗(yàn)由25道選擇題構(gòu)成,每道選擇題有4個(gè)選項(xiàng),其中有且只有一個(gè)選項(xiàng)正確,每選一個(gè)正確答案得4分,不作出選擇或選錯(cuò)的不得分,滿分100分,某學(xué)生選對(duì)任一題的概率為0.8,則此學(xué)生在這一次測(cè)試中的成績(jī)的期望與方差分別為_(kāi)_______.
解析:記ξ表示該學(xué)生
8、答對(duì)題的個(gè)數(shù),η表示該學(xué)生的得分,則η=4ξ,
依題意知:ξ~B(25,0.8).
所以E(ξ)=25×0.8=20,
D(ξ)=25×0.8×0.2=4,
所以E(η)=E(4ξ)=4E(ξ)=4×20=80,
D(η)=D(4ξ)=42D(ξ)=16×4=64.
答案:80,64
三、解答題:每小題15分,共45分.
9.海關(guān)大樓頂端鑲有A、B兩面大鐘,它們的日走時(shí)誤差分別為X1、X2(單位:s),其分布列如下:
X1
-2
-1
0
1
2
P
0.05
0.05
0.8
0.05
0.05
X2
-2
-1
0
1
2
P
0
9、.1
0.2
0.4
0.2
0.1
根據(jù)這兩面大鐘日走時(shí)誤差的均值與方差比較這兩面大鐘的質(zhì)量.
解析:∵E(X1)=0,E(X2)=0,∴E(X1)=E(X2).
∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5;
D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.
∴D(X1)<D(X2).
由上可知,A面大鐘的質(zhì)量較好.
10.某人投彈擊中目標(biāo)的概率為p=0.8,
(1)求投彈一次,命中次
10、數(shù)X的均值和方差;
(2)求重復(fù)10次投彈時(shí),擊中次數(shù)Y的均值和方差.
解析:(1)X的分布列為:
X
0
1
P
0.2
0.8
E(X)=0×0.2+1×0.8=0.8.
D(X)=(0-0.8)2×0.2+(1-0.8)2×0.8=0.16.
(2)由題意知,命中次數(shù)Y服從二項(xiàng)分布,即Y~B(10,0.8),
所以E(Y)=np=10×0.8=8,
D(Y)=10×0.8×0.2=1.6.
11.有甲、乙兩名同學(xué),據(jù)統(tǒng)計(jì),他們?cè)诮獯鹜环輸?shù)學(xué)試卷時(shí),各自的分?jǐn)?shù)在80分、90分、100分的概率分布大致如下表所示:
甲
分?jǐn)?shù)X甲
80
90
100
概
11、率
0.2
0.6
0.2
乙
分?jǐn)?shù)X乙
80
90
100
概率
0.4
0.2
0.4
試分析甲、乙兩名同學(xué)誰(shuí)的成績(jī)好一些.
解析:在解答同一份數(shù)學(xué)試卷時(shí),甲、乙兩人成績(jī)的均值分別為
E(X甲)=80×0.2+90×0.6+100×0.2=90,
E(X乙)=80×0.4+90×0.2+100×0.4=90.
方差分別為:
D(X甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,
D(X乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80.
由上面數(shù)據(jù),可知E(X甲)=E(X乙),D(X甲)<D(X乙).
這表示,甲、乙兩人所得分?jǐn)?shù)的平均值相等,但兩人的分?jǐn)?shù)的穩(wěn)定程度不同,甲同學(xué)分?jǐn)?shù)較穩(wěn)定,乙同學(xué)分?jǐn)?shù)波動(dòng)較大,所以甲同學(xué)的成績(jī)較好.
最新精品語(yǔ)文資料