2018-2019學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.1.2 數(shù)學(xué)歸納法應(yīng)用舉例導(dǎo)學(xué)案 新人教B版選修4-5.docx
《2018-2019學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.1.2 數(shù)學(xué)歸納法應(yīng)用舉例導(dǎo)學(xué)案 新人教B版選修4-5.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.1.2 數(shù)學(xué)歸納法應(yīng)用舉例導(dǎo)學(xué)案 新人教B版選修4-5.docx(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
3.1.2 數(shù)學(xué)歸納法應(yīng)用舉例 1.進(jìn)一步理解數(shù)學(xué)歸納法原理. 2.會(huì)用數(shù)學(xué)歸納法證明整除問題以及平面幾何中的有關(guān)問題. 知識點(diǎn)1 用數(shù)學(xué)歸納法證明整除性問題 【例1】 已知數(shù)列{an}滿足a1=0,a2=1,當(dāng)n∈N*時(shí),an+2=an+1+an,求證:數(shù)列{an}的第4m+1項(xiàng)(m∈N*)能被3整除. 證明 (1)當(dāng)m=1時(shí), a4m+1=a5=a4+a3=(a3+a2)+(a2+a1) =(a2+a1)+2a2+a1=3a2+2a1=3+0=3. 即當(dāng)m=1時(shí),第4m+1項(xiàng)能被3整除. (2)假設(shè)當(dāng)m=k時(shí),a4k+1能被3整除,則當(dāng)m=k+1時(shí),a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2 =2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1. 顯然,3a4k+2能被3整除,又由假定知a4k+1能被3整除. ∴3a4k+2+2a4k+1能被3整除. 即當(dāng)m=k+1時(shí),a4(k+1)+1也能被3整除. 由(1)和(2)知,對于n∈N*,數(shù)列{an}中的第4m+1項(xiàng)能被3整除. ●反思感悟:本題若從遞推式入手,設(shè)法求出通項(xiàng)公式,會(huì)相當(dāng)困難.這時(shí),可轉(zhuǎn)向用數(shù)學(xué)歸納法證明. 1.用數(shù)學(xué)歸納法證明:(x+1)n+1+(x+2)2n-1 (n∈N*)能被x2+3x+3整除. 證明 (1)當(dāng)n=1時(shí),(x+1)1+1+(x+2)2-1=x2+3x+3, 顯然命題成立. (2)假設(shè)n=k (k≥1)時(shí),命題成立, 即(x+1)k+1+(x+2)2k-1能被x2+3x+3整除, 則當(dāng)n=k+1時(shí),(x+1)k+2+(x+2)2k+1=(x+1)k+2+(x+1)(x+2)2k-1+(x+2)2k+1-(x+1)(x+2)2k-1 =(x+1)[(x+1)k+1+(x+2)2k-1]+(x+2)2k-1(x2+3x+3). 由假設(shè)可知上式可被x2+3x+3整除, 即n=k+1時(shí)命題成立.由(1)(2)可知原命題成立. 知識點(diǎn)2 探索問題 【例2】 若不等式+++…+>對一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明你的結(jié)論. 解 取n=1,++=, 令>?a<26,而a∈N*,∴取a=25. 下面用數(shù)學(xué)歸納法證明: ++…+>. (1)n=1時(shí),已證結(jié)論正確. (2)假設(shè)n=k (k∈N*)時(shí), ++…+>, 則當(dāng)n=k+1時(shí),有++…++++ =+ >+. ∵+=>, ∴+->0. ∴++…+>. 即n=k+1時(shí),結(jié)論也成立. 由(1)(2)可知,對一切n∈N*,都有 ++…+>.故a的最大值為25. ●反思感悟:探索性問題一般從考查特例入手,歸納出一般結(jié)論,然后用數(shù)學(xué)歸納法證明,體現(xiàn)了從特殊到一般的數(shù)學(xué)思想. 2.已知f(n)=(2n+7)3n+9,是否存在正整數(shù)m,使得對任意n∈N*,都能使m整除f(n)?如果存在,求出m最大的值,并證明你的結(jié)論;若不存在,說明理由. 解 f(1)=36,f(2)=108,f(3)=360 猜想:能整除f(n)的最大整數(shù)是36. 證明如下: 用數(shù)學(xué)歸納法. (1)當(dāng)n=1時(shí),f(1)=(21+7)3+9=36,能被36整除. (2)假設(shè)n=k (k≥1)時(shí),f(k)能被36整除, 即(2k+7)3k+9能被36整除. 則當(dāng)n=k+1時(shí), f(k+1)=[2(k+1)+7]3k+1+9 =3[(2k+7)3k+9]+18(3k-1-1). 由歸納假設(shè)3[(2k+7)3k+9]能被36整除, 而3k-1-1是偶數(shù). ∴18(3k-1-1)能被36整除. ∴當(dāng)n=k+1時(shí),f(n)能被36整除. 由(1)(2)可知,對任意n∈N*,f(n)能被36整除. 知識點(diǎn)3 用數(shù)學(xué)歸納法證明幾何問題 【例3】 平面上有n個(gè)圓,每兩圓交于兩點(diǎn),每三圓不過同一點(diǎn),求證這n個(gè)圓分平面為n2-n+2個(gè)部分. 證明 (1)當(dāng)n=1時(shí),n2-n+2=1-1+2=2, 而一圓把平面分成兩部分,所以n=1命題成立. (2)設(shè)n=k時(shí),k個(gè)圓分平面為k2-k+2個(gè)部分, 則n=k+1時(shí),第k+1個(gè)圓與前k個(gè)圓有2k個(gè)交點(diǎn), 這2k個(gè)交點(diǎn)分第k+1個(gè)圓為2k段, 每一段都將原來所在的平面一分為二, 故增加了2k個(gè)平面塊, 共有:(k2-k+2)+2k=(k+1)2-(k+1)+2個(gè)部分. ∴對n=k+1也成立. 由(1)(2)可知,這n個(gè)圓分割平面為n2-n+2個(gè)部分. ●反思感悟:如何應(yīng)用歸納假設(shè)及已知條件,其關(guān)鍵是分析k增加“1”時(shí),研究第(k+1)個(gè)圓與其他k個(gè)圓的交點(diǎn)個(gè)數(shù)問題,通常要結(jié)合圖形分析. 3.證明:凸n邊形的對角線的條數(shù)f(n)=n(n-3) (n≥4). 證明 (1)n=4時(shí),f(4)=4(4-3)=2, 四邊形有兩條對角線,命題成立. (2)假設(shè)n=k (k≥4)時(shí)命題成立, 即凸k邊形的對角線的條數(shù)f(k)=k(k-3). 當(dāng)n=k+1時(shí),凸k+1邊形是在k邊形的基礎(chǔ)上增加了一邊,增加了一個(gè)頂點(diǎn)Ak+1,增加的對角線條數(shù)是頂點(diǎn)Ak+1與不相鄰頂點(diǎn)連線再加上原k邊形的一邊A1Ak,共增加的對角線條數(shù)為: (k+1-3)+1=k-1, f(k+1)=k(k-3)+k-1=(k2-k-2) =(k+1)(k-2)=(k+1)[(k+1)-3]. 故n=k+1時(shí),命題也成立. 由(1)(2)可知,對n≥4,n∈N*公式成立. 課堂小結(jié) 1.用數(shù)學(xué)歸納法可證明有關(guān)的正整數(shù)問題,但并不是所有的正整數(shù)問題都是用數(shù)學(xué)歸納法證明的,學(xué)習(xí)時(shí)要具體問題具體分析. 2.運(yùn)用數(shù)學(xué)歸納法時(shí)易犯的錯(cuò)誤 (1)對項(xiàng)數(shù)估算的錯(cuò)誤,特別是尋找n=k與n=k+1的關(guān)系時(shí),項(xiàng)數(shù)發(fā)生什么變化被弄錯(cuò). (2)沒有利用歸納假設(shè):歸納假設(shè)是必須要用的,假設(shè)是起橋梁作用的,橋梁斷了就通不過去了. (3)關(guān)鍵步驟含糊不清,“假設(shè)n=k時(shí)結(jié)論成立,利用此假設(shè)證明n=k+1時(shí)結(jié)論也成立”,是數(shù)學(xué)歸納法的關(guān)鍵一步,也是證明問題最重要的環(huán)節(jié),對推導(dǎo)的過程要把步驟寫完整,注意證明過程的嚴(yán)謹(jǐn)性、規(guī)范性. 隨堂演練 1.求證:an+1+(a+1)2n-1能被a2+a+1整除,n∈N*. 證明 (1)當(dāng)n=1時(shí),a1+1+(a+1)21-1=a2+a+1,命題顯然成立. 設(shè)n=k (k≥1)時(shí),ak+1+(a+1)2k-1能被a2+a+1整除,則當(dāng)n=k+1時(shí), ak+2+(a+1)2k+1=aak+1+(a+1)2(a+1)2k-1 =a[ak+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1 =a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1. 由歸納假設(shè),知上式中的兩項(xiàng)均能被a2+a+1整除, 故n=k+1時(shí)命題成立. 由(1)(2)知,對n∈N*,命題成立. 2.設(shè)x1、x2是方程x2-2ax+b=0 (a,b∈Z)的兩個(gè)根,求證:x+x (n∈N)是偶數(shù). 證明 (1)當(dāng)n=1時(shí),由韋達(dá)定理知x1+x2=2a, 而a∈Z,所以2a為偶數(shù),命題成立. (2)假設(shè)n=k時(shí)命題成立,即x1+x2,…,x+x,x+x為偶數(shù), 那么x+x=(x+x)(x1+x2)-x1x2(x+x). 假設(shè)x+x,x+x是偶數(shù),所以,x+x為偶數(shù),即n=k+1時(shí)命題成立. 由(1)和(2)知,對n∈N命題均成立. 基礎(chǔ)達(dá)標(biāo) 1.一批花盆堆成三角形垛,頂層一個(gè),以下各層排成正三角形,第n層和第n+1層花盆總數(shù)分別是f(n)和f(n+1),則f(n)與f(n+1)的關(guān)系為( ) A.f(n+1)-f(n)=n+1 B.f(n+1)-f(n)=n C.f(n+1)-f(n)=2n D.f(n+1)-f(n)=1 答案 A 2.n條共面直線任何兩條不平行,任何三條不共點(diǎn),設(shè)其交點(diǎn)個(gè)數(shù)為f(n),則f(n+1)-f(n)等于( ) A.n B.n+1 C.n(n-1) D.n(n+1) 答案 A 3.設(shè)f(n)=++++…+ (n∈N*),那么f(n+1)-f(n)等于( ) A. B. C.+ D.+- 答案 D 4.記凸k邊形對角線的條數(shù)為f(k)(k≥4),那么由k到k+1時(shí),對角線條數(shù)增加了________條. 解析 ∵f(k)=k(k-3),f(k+1)=(k+1)(k-2),f(k+1)-f(k)=k-1. 答案 k-1 5.用數(shù)學(xué)歸納法證明1+2+22+…+25n-1是31的整數(shù)倍時(shí),當(dāng)n=1時(shí),左式等于________. 答案 1+2+22+23+24 6.已知Sn=1++++…+(n>1,n∈N*). 求證:S2n>1+(n≥2,n∈N*). 證明 (1)當(dāng)n=2時(shí),S22=1+++=>1+,不等式成立. (2)假設(shè)n=k (k≥2)時(shí)不等式成立,即 S2k=1++++…+>1+, 當(dāng)n=k+1時(shí), S2k+1=1++++…+++…+ >1+++…+>1++ =1++=1+. 故當(dāng)n=k+1時(shí)不等式也成立, 綜合(1)(2)知,對任意n∈N*,n≥2, 不等式S2n>1+都成立. 綜合提高 7.用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)該寫成( ) A.假設(shè)當(dāng)n=k(k∈N+)時(shí),xk+yk能被x+y整除 B.假設(shè)當(dāng)n=2k(k∈N+)時(shí),xk+yk能被x+y整除 C.假設(shè)當(dāng)n=2k+1(k∈N+)時(shí),xk+yk能被x+y整除 D.假設(shè)當(dāng)n=2k-1(k∈N+)時(shí),xk+yk能被x+y整除 解析 由數(shù)學(xué)歸納的證明思想判斷,應(yīng)選D. 答案 D 8.用數(shù)學(xué)歸納法證明“- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.1.2 數(shù)學(xué)歸納法應(yīng)用舉例導(dǎo)學(xué)案 新人教B版選修4-5 2018 2019 學(xué)年 高中數(shù)學(xué) 第三 數(shù)學(xué) 歸納法 貝努利 不等式 3.1
鏈接地址:http://www.820124.com/p-6350807.html