《新編廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)檢測(cè)試題:25 不等式能成立有解問(wèn)題的處理方法》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)檢測(cè)試題:25 不等式能成立有解問(wèn)題的處理方法(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
不等式能成立(有解)問(wèn)題的處理方法
若在區(qū)間上存在實(shí)數(shù)使不等式成立,則等價(jià)于在區(qū)間上;若在區(qū)間上存在實(shí)數(shù)使不等式成立,則等價(jià)于在區(qū)間上的。若在區(qū)間上存在實(shí)數(shù)使不等式有解,則等價(jià)于在區(qū)間上的最小值;若在區(qū)間上存在實(shí)數(shù)使不等式無(wú)解,則等價(jià)于在區(qū)間上的最小值。
例12、已知不等式在實(shí)數(shù)集上的解集不是空集,求實(shí)數(shù)的取值范圍。
例13、若關(guān)于的不等式的解集不是空集,則實(shí)數(shù)的取值范圍是 。
解:設(shè)。則關(guān)于的不等式的解集不是空集在上能成立,即解得或。
例14、已知函數(shù)()存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍。
解:,則
因?yàn)楹瘮?shù)存在單調(diào)遞減區(qū)間,所以有
2、解。
由題設(shè)可知,的定義域是 ,而在上有解,
就等價(jià)于在區(qū)間能成立,即,
成立, 進(jìn)而等價(jià)于成立,其中;
由得,。于是,,
由題設(shè),所以的取值范圍是。
不等式恰成立問(wèn)題的處理方法
例15、不等式的解集為,則 6 。
例16、已知當(dāng)?shù)闹涤蚴?,試求?shí)數(shù)的值。
解:本題是一個(gè)恰成立問(wèn)題,這相當(dāng)于的解集是;
當(dāng)時(shí),由于時(shí), ,與其值域是矛盾,
當(dāng)時(shí), 是上的增函數(shù),
所以,的最小值為,令,即
四、應(yīng)用舉例
1、若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)取值范圍。
2、已知不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍。
4、不等式在內(nèi)恒成立,求實(shí)數(shù)的取值范圍。
5
3、、(1)對(duì)一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的范圍。
(2)若不等式有解,求實(shí)數(shù)的范圍。
(3)若方程有解,求實(shí)數(shù)的范圍。
6、(1)若滿足方程,不等式恒成立,求實(shí)數(shù)的范圍。
(2)若滿足方程,,求實(shí)數(shù)的范圍。
7、已知恒成立,則的取值范圍是 。
解:設(shè),其函數(shù)圖象的開口向上,
又,,即的取值范圍是。
8、當(dāng)時(shí),不等式恒成立,則的取值范圍是 。
9、已知不等式對(duì)任意正實(shí)數(shù)恒成立,則正實(shí)數(shù)的最小值為 。
10、不等式對(duì)一切非零實(shí)數(shù)總成立,則的取值范圍是。
11、已知是方程的兩個(gè)實(shí)根,不等式恒成立,則
4、實(shí)數(shù)的取值范圍是 。
12、若不等式在上恒成立,則實(shí)數(shù) 的取值范圍是 。
13、已知,函數(shù)當(dāng)時(shí),恒有成立,則實(shí)數(shù)的取值范圍是 。
14、若不等式在內(nèi)恒成立,則實(shí)數(shù)的取值范圍是 。
15、若不等式,當(dāng)時(shí)恒成立,則實(shí)數(shù)的取值范圍是 。
16、若方程在區(qū)間內(nèi)有解,則實(shí)數(shù) 的取值范圍是 。
17、(1)已知,若關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),則( C )
A、 B、
5、 C、 D、
(2)已知不等式組的解集中只含有一個(gè)整數(shù)解—2,則實(shí)數(shù) 的取值范圍是 。
(3)若關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),則實(shí)數(shù)的取值范圍是 。
解:已知不等式化為,因?yàn)榻饧械恼麛?shù)恰有個(gè),則
,即。
不等式的解滿足,即,
顯然,,為使解集中的整數(shù)恰有個(gè),則必須且只須滿足。
即,解得,
所以實(shí)數(shù)的取值范圍是。
18、,不等式恒成立,則實(shí)數(shù) 的取值范圍是 。
19、設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),,若對(duì)任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是( C )
A、 B、 C、 D、
20、設(shè)函數(shù)對(duì)任意恒成立,則實(shí)數(shù)的取值范圍是。
21、設(shè)函數(shù),對(duì)任意,恒成立,則實(shí)數(shù)的取值范圍是。
解:依據(jù)題意得
在上恒定成立,即在上恒成立;
當(dāng)時(shí),函數(shù)取得最小值,
所以,即,解得或。