(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 7.3 等比數(shù)列及其前n項(xiàng)和講義(含解析).docx
《(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 7.3 等比數(shù)列及其前n項(xiàng)和講義(含解析).docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 7.3 等比數(shù)列及其前n項(xiàng)和講義(含解析).docx(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
7.3 等比數(shù)列及其前n項(xiàng)和 最新考綱 考情考向分析 1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及其應(yīng)用. 2.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系. 3.會(huì)用數(shù)列的等比關(guān)系解決實(shí)際問(wèn)題. 以考查等比數(shù)列的通項(xiàng)、前n項(xiàng)和及性質(zhì)為主,等比數(shù)列的證明也是考查的熱點(diǎn).本節(jié)內(nèi)容在高考中既可以以選擇題、填空題的形式進(jìn)行考查,也可以以解答題的形式進(jìn)行考查.解答題往往與等差數(shù)列、數(shù)列求和、不等式等問(wèn)題綜合考查,難度為中低檔. 1.等比數(shù)列的有關(guān)概念 (1)定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為=q(n∈N*,q為非零常數(shù)). (2)等比中項(xiàng):如果a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即G是a與b的等比中項(xiàng)?a,G,b成等比數(shù)列?G2=ab. 2.等比數(shù)列的有關(guān)公式 (1)通項(xiàng)公式:an=a1qn-1. (2)前n項(xiàng)和公式: Sn=. 3.等比數(shù)列的常用性質(zhì) (1)通項(xiàng)公式的推廣:an=amqn-m(n,m∈N*). (2)若m+n=p+q=2k(m,n,p,q,k∈N*),則aman=apaq=a. (3)若數(shù)列{an},{bn}(項(xiàng)數(shù)相同)是等比數(shù)列,則{λan},,{a},{anbn},(λ≠0)仍然是等比數(shù)列. (4)在等比數(shù)列{an}中,等距離取出若干項(xiàng)也構(gòu)成一個(gè)等比數(shù)列,即an,an+k,an+2k,an+3k,…為等比數(shù)列,公比為qk. 概念方法微思考 1.將一個(gè)等比數(shù)列的各項(xiàng)取倒數(shù),所得的數(shù)列還是一個(gè)等比數(shù)列嗎?若是,這兩個(gè)等比數(shù)列的公比有何關(guān)系? 提示 仍然是一個(gè)等比數(shù)列,這兩個(gè)數(shù)列的公比互為倒數(shù). 2.任意兩個(gè)實(shí)數(shù)都有等比中項(xiàng)嗎? 提示 不是.只有同號(hào)的兩個(gè)非零實(shí)數(shù)才有等比中項(xiàng). 3.“b2=ac”是“a,b,c”成等比數(shù)列的什么條件? 提示 必要不充分條件.因?yàn)閎2=ac時(shí)不一定有a,b,c成等比數(shù)列,比如a=0,b=0,c=1.但a,b,c成等比數(shù)列一定有b2=ac. 題組一 思考辨析 1.判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“”) (1)滿(mǎn)足an+1=qan(n∈N*,q為常數(shù))的數(shù)列{an}為等比數(shù)列.( ) (2)如果數(shù)列{an}為等比數(shù)列,bn=a2n-1+a2n,則數(shù)列{bn}也是等比數(shù)列.( ) (3)如果數(shù)列{an}為等比數(shù)列,則數(shù)列{lnan}是等差數(shù)列.( ) (4)數(shù)列{an}的通項(xiàng)公式是an=an,則其前n項(xiàng)和為Sn=.( ) (5)數(shù)列{an}為等比數(shù)列,則S4,S8-S4,S12-S8成等比數(shù)列.( ) 題組二 教材改編 2.[P51例3]已知{an}是等比數(shù)列,a2=2,a5=,則公比q=______. 答案 解析 由題意知q3==,∴q=. 3.[P54T3]公比不為1的等比數(shù)列{an}滿(mǎn)足a5a6+a4a7=18,若a1am=9,則m的值為( ) A.8B.9C.10D.11 答案 C 解析 由題意得,2a5a6=18,a5a6=9,∴a1am=a5a6=9,∴m=10. 題組三 易錯(cuò)自糾 4.若1,a1,a2,4成等差數(shù)列,1,b1,b2,b3,4成等比數(shù)列,則的值為_(kāi)_______. 答案 - 解析 ∵1,a1,a2,4成等差數(shù)列, ∴3(a2-a1)=4-1,∴a2-a1=1. 又∵1,b1,b2,b3,4成等比數(shù)列,設(shè)其公比為q, 則b=14=4,且b2=1q2>0,∴b2=2, ∴==-. 5.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,8a2+a5=0,則=________. 答案 -11 解析 設(shè)等比數(shù)列{an}的公比為q, ∵8a2+a5=0,∴8a1q+a1q4=0. ∴q3+8=0,∴q=-2, ∴= ===-11. 6.一種專(zhuān)門(mén)占據(jù)內(nèi)存的計(jì)算機(jī)病毒開(kāi)機(jī)時(shí)占據(jù)內(nèi)存1MB,然后每3秒自身復(fù)制一次,復(fù)制后所占內(nèi)存是原來(lái)的2倍,那么開(kāi)機(jī)________秒,該病毒占據(jù)內(nèi)存8GB.(1GB=210MB) 答案 39 解析 由題意可知,病毒每復(fù)制一次所占內(nèi)存的大小構(gòu)成一等比數(shù)列{an},且a1=2,q=2,∴an=2n, 則2n=8210=213,∴n=13. 即病毒共復(fù)制了13次. ∴所需時(shí)間為133=39(秒). 題型一 等比數(shù)列基本量的運(yùn)算 1.(2018臺(tái)州質(zhì)量評(píng)估)已知正項(xiàng)等比數(shù)列{an}中,若a1a3=2,a2a4=4,則a5等于( ) A.4B.4C.8D.8 答案 B 解析 由于等比數(shù)列各項(xiàng)為正,則由題意得解得所以a5=a1q4=4,故選B. 2.(2018全國(guó)Ⅲ)等比數(shù)列{an}中,a1=1,a5=4a3. (1)求{an}的通項(xiàng)公式; (2)記Sn為{an}的前n項(xiàng)和,若Sm=63,求m. 解 (1)設(shè){an}的公比為q,由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1(n∈N*). (2)若an=(-2)n-1,則Sn=. 由Sm=63得(-2)m=-188,此方程沒(méi)有正整數(shù)解. 若an=2n-1,則Sn=2n-1. 由Sm=63得2m=64,解得m=6. 綜上,m=6. 思維升華 (1)等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式共涉及五個(gè)量a1,an,q,n,Sn,已知其中三個(gè)就能求另外兩個(gè)(簡(jiǎn)稱(chēng)“知三求二”). (2)運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),注意對(duì)q=1和q≠1的分類(lèi)討論. 題型二 等比數(shù)列的判定與證明 例1(2018麗水、衢州、湖州三地市質(zhì)檢)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=an+1-3n-1,n∈N*. (1)證明:數(shù)列{an+3}是等比數(shù)列; (2)對(duì)k∈N*,設(shè)f(n)=求使不等式[f(2)-f(m)]cos(mπ)≤0成立的正整數(shù)m的取值范圍. (1)證明 當(dāng)n≥2時(shí),由Sn=an+1-3n-1,得Sn-1=an-3(n-1)-1, 由Sn-Sn-1得,an+1=2an+3,n≥2,所以=2,n≥2,又S1=a2-3-1,a1=1,所以a2=5,=2, 因此{(lán)an+3}是以a1+3=4為首項(xiàng),2為公比的等比數(shù)列. (2)解 由(1)知an+3=42n-1=2n+1,Sn=an+1-3n-1=2n+2-3n-4, 因?yàn)閒(n)= 當(dāng)m為偶數(shù)時(shí),cos(mπ)=1,f(2)=3,f(m)=m+1, 因?yàn)樵坏仁娇苫癁?-(m+1)≤0,即m≥2,且m=2k(k≥1,k∈N*). 當(dāng)m為奇數(shù)時(shí),cos(mπ)=-1,f(2)=3,f(m)=2m+1-1, 原不等式可化為3≥2m+1-1,當(dāng)m=1時(shí)符合條件. 綜上可得,正整數(shù)m的取值范圍是m=2k(k≥1,k∈N*)或m=1. 思維升華判定一個(gè)數(shù)列為等比數(shù)列的常見(jiàn)方法 (1)定義法:若=q(q是非零常數(shù)),則數(shù)列{an}是等比數(shù)列. (2)等比中項(xiàng)法:若a=anan+2(n∈N*,an≠0),則數(shù)列{an}是等比數(shù)列. (3)通項(xiàng)公式法:若an=Aqn(A,q為非零常數(shù)),則數(shù)列{an}是等比數(shù)列. 跟蹤訓(xùn)練1(2018浙江省六校協(xié)作體期末聯(lián)考)已知數(shù)列{an}的首項(xiàng)a1=t>0,an+1=,n=1,2,…. (1)若t=,求證是等比數(shù)列,并求出{an}的通項(xiàng)公式; (2)若an+1>an對(duì)一切n∈N*都成立,求t的取值范圍. 解 (1)由題意知an>0,==+, -1=,又-1=, 所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列, 所以-1=n-1,an=. (2)由(1)知-1=, -1=n-1, 由a1>0,an+1=,知an>0, 故由an+1>an得<, 即n+1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江專(zhuān)用2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 7.3 等比數(shù)列及其前n項(xiàng)和講義含解析 浙江 專(zhuān)用 2020 高考 數(shù)學(xué) 新增 一輪 復(fù)習(xí) 第七 數(shù)列 歸納法 等比數(shù)列 及其
鏈接地址:http://www.820124.com/p-6408459.html