影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案

上傳人:仙*** 文檔編號(hào):64125365 上傳時(shí)間:2022-03-21 格式:DOC 頁(yè)數(shù):6 大小:170.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案_第1頁(yè)
第1頁(yè) / 共6頁(yè)
新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案_第2頁(yè)
第2頁(yè) / 共6頁(yè)
新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)3 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 Word版含答案(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 難點(diǎn)三 以構(gòu)建函數(shù)模型、解三角形、動(dòng)點(diǎn)軌跡為背景的實(shí)際問(wèn)題 (對(duì)應(yīng)學(xué)生用書(shū)第66頁(yè)) 高考實(shí)際應(yīng)用題一直是高考當(dāng)中的重點(diǎn)與難點(diǎn),雖有較為清晰的數(shù)學(xué)概念分析,但是如果學(xué)生對(duì)應(yīng)用題當(dāng)中的數(shù)學(xué)公式的基本應(yīng)用沒(méi)有一個(gè)較為清晰的理解,往往會(huì)陷入到應(yīng)用的“陷阱”當(dāng)中.因此良好的解題思路,以及正確的解題方式,是高考數(shù)學(xué)應(yīng)用解題的重點(diǎn).高考實(shí)際應(yīng)用問(wèn)題常常在函數(shù)、三角函數(shù)和三角形、解析法中體現(xiàn).因此對(duì)于高考數(shù)學(xué)應(yīng)用題的解題方向來(lái)看,我們應(yīng)當(dāng)從構(gòu)建具體的思維應(yīng)用模式出發(fā). 1.與函數(shù)相關(guān)的實(shí)際應(yīng)用問(wèn)題 函數(shù)是高中數(shù)學(xué)的主干和核心知識(shí),以函數(shù)知識(shí)為背景的應(yīng)用題一直活躍在高考的舞臺(tái)上

2、,引人關(guān)注,隨著知識(shí)的更新,函數(shù)應(yīng)用問(wèn)題中的模型也越來(lái)越新穎.高考函數(shù)應(yīng)用問(wèn)題的熱點(diǎn)模型主要有:一次、二次函數(shù)型,三次函數(shù)型,指數(shù)、對(duì)數(shù)函數(shù)型,分段函數(shù)型等.解函數(shù)應(yīng)用問(wèn)題的步驟(四步八字):(1)審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇數(shù)學(xué)模型;(2)建模:將自然語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,將文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言,利用數(shù)學(xué)知識(shí),建立相應(yīng)的數(shù)學(xué)模型;(3)解模:求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論;(4)還原:將數(shù)學(xué)問(wèn)題還原為實(shí)際問(wèn)題的意義. 【例1】 (20xx·江蘇高考)現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部的形狀是正四棱錐P-A1B1C1D1,下部的形狀是正四棱柱ABCD-A1B1

3、C1D1(如圖1所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍. (1)若AB=6 m,PO1=2 m,則倉(cāng)庫(kù)的容積是多少? (2)若正四棱錐的側(cè)棱長(zhǎng)為6 m,則當(dāng)PO1為多少時(shí),倉(cāng)庫(kù)的容積最大? 【導(dǎo)學(xué)號(hào):56394095】 圖1 [解] (1)由PO1=2知O1O=4PO1=8. 因?yàn)锳1B1=AB=6, 所以正四棱錐P-A1B1C1D1的體積 V錐=·A1B·PO1=×62×2=24(m3); 正四棱柱ABCD-A1B1C1D1的體積 V柱=AB2·O1O=62×8=288(m3). 所以倉(cāng)庫(kù)的容積V=V錐+V柱=24+288=312(m3)

4、. (2)設(shè)A1B1=a m,PO1=h m, 則00,V是單調(diào)增函數(shù); 當(dāng)2

5、的二次函數(shù)問(wèn)題(如面積、利潤(rùn)、產(chǎn)量等),可根據(jù)已知條件確定二次函數(shù)模型,結(jié)合二次函數(shù)的圖象、單調(diào)性、零點(diǎn)解決,解題中一定注意函數(shù)的定義域. 2.與解三角形相關(guān)的實(shí)際應(yīng)用問(wèn)題 三角函數(shù)既是解決生產(chǎn)實(shí)際問(wèn)題的工具,又是進(jìn)一步學(xué)習(xí)的基礎(chǔ),高考中常會(huì)考察與三角函數(shù)有關(guān)的實(shí)際問(wèn)題,需要建立三角函數(shù)模型將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題.解決三角實(shí)際問(wèn)題的關(guān)鍵有三點(diǎn):一是仔細(xì)審題,準(zhǔn)確理解題意,分析條件和結(jié)論,明確問(wèn)題的實(shí)際背景,理清問(wèn)題中各個(gè)量之間的數(shù)量關(guān)系;二是合理選取參變量,設(shè)定變?cè)瑢ふ宜鼈冎g的內(nèi)在聯(lián)系,選用恰當(dāng)?shù)拇鷶?shù)式表示問(wèn)題中的關(guān)系;三是建立與求解相應(yīng)的三角函數(shù)模型.將文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言

6、轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,利用數(shù)學(xué)知識(shí)建立相應(yīng)的數(shù)學(xué)模型,求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論. 【例2】 (20xx·江蘇省南京市迎一模模擬)如圖2,某城市有一條公路正西方AO通過(guò)市中心O后轉(zhuǎn)向北偏東α角方向的OB,位于該市的某大學(xué)M與市中心O的距離OM=3 km,且∠AOM=β,現(xiàn)要修筑一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線(xiàn)段,且經(jīng)過(guò)大學(xué)M,其中tan α=2,cos β=,AO=15 km. (1)求大學(xué)M與A站的距離AM; (2)求鐵路AB段的長(zhǎng). 圖2 [解] (1)在△AOM中,AO=15,∠AOM=β,且cos β=,OM=3, 由余弦定理可得:A

7、M2=OA2+OM2-2OA·OM·cos∠AOM=(3)2+152-2×3×15×=72. 所以可得:AM=6,大學(xué)M與A站的距離AM為6 km. (2)∵cos β=,且β為銳角,∴sin β=, 在△AOM中,由正弦定理可得:=,即=, ∴sin∠MAO=,∴∠MAO=,∴∠ABO=α-, ∵tan α=2,∴sin α=,cos α=, ∴sin∠ABO=sin=, 又∵∠AOB=π-α, ∴sin∠AOB=sin(π-α)=. 在△AOB中,AO=15,由正弦定理可得:=,即=, ∴解得AB=30,即鐵路AB段的長(zhǎng)為30 km. [點(diǎn)評(píng)] 解三角形應(yīng)用題常有以下

8、兩種情形:(1)實(shí)際問(wèn)題經(jīng)抽象概括后,已知量與未知量全部集中在一個(gè)三角形中,可用正弦定理或余弦定理求解;(2)實(shí)際問(wèn)題經(jīng)抽象概括后,已知量與未知量涉及到兩個(gè)或兩個(gè)以上的三角形,這時(shí)需作出這些三角形,先解夠條件的三角形,然后逐步求解其他三角形,有時(shí)需設(shè)出未知量,從幾個(gè)三角形中列出方程(組),解方程(組)得出所要求的解. 3.以動(dòng)點(diǎn)軌跡為背景的實(shí)際應(yīng)用問(wèn)題 近年江蘇高考將直線(xiàn)與圓的位置關(guān)系隱含到實(shí)際問(wèn)題中進(jìn)行考查,利用解析幾何中最值與范圍問(wèn)題的解法求實(shí)際問(wèn)題中的最值與范圍問(wèn)題,這是一個(gè)高考新方向,也是高考的一個(gè)熱點(diǎn).解析幾何中的最值與范圍問(wèn)題往往需建立求解目標(biāo)函數(shù),通過(guò)函數(shù)的最值研究幾何中的最

9、值與范圍. 【例3】 (南京市、鹽城市高三第一次模擬)如圖3所示,某街道居委會(huì)擬在EF地段的居民樓正南方向的空白地段AE上建一個(gè)活動(dòng)中心,其中AE=30米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形ABCD,上部分是以DC為直徑的半圓. 為了保證居民樓住戶(hù)的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線(xiàn)照射下落在居民樓上的影長(zhǎng)GE不超過(guò)2.5米,其中該太陽(yáng)光線(xiàn)與水平線(xiàn)的夾角θ滿(mǎn)足tan θ=. 圖3 (1)若設(shè)計(jì)AB=18米,AD=6米,問(wèn)能否保證上述采光要求? (2)在保證上述采光要求的前提下,如何設(shè)計(jì)AB與AD的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(

10、注:計(jì)算中π取3) [解] 如圖所示,以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線(xiàn)為x軸,建立平面直角坐標(biāo)系. (1)因?yàn)锳B=18,AD=6,所以半圓的圓心為H(9,6), 半徑R=9.設(shè)太陽(yáng)光線(xiàn)所在直線(xiàn)方程為y=-x+b, 即3x+4y-4b=0, 則由=9, 解得b=24或b=(舍). 故太陽(yáng)光線(xiàn)所在直線(xiàn)方程為y=-x+24, 令x=30,得EG=1.5米<2.5米. 所以此時(shí)能保證上述采光要求. (2)設(shè)AD=h米,AB=2r米,則半圓的圓心為H(r,h),半徑為r. 法一:設(shè)太陽(yáng)光線(xiàn)所在直線(xiàn)方程為y=-x+b, 即3x+4y-4b=0,由=r, 解得b=h+2r或b=

11、h-(舍). 故太陽(yáng)光線(xiàn)所在直線(xiàn)方程為y=-x+h+2r, 令x=30,得EG=2r+h-,由EG≤,得h≤25-2r. 所以S=2rh+πr2=2rh+×r2≤2r(25-2r)+×r2 =-r2+50r=-(r-10)2+250≤250. 當(dāng)且僅當(dāng)r=10時(shí)取等號(hào). 所以當(dāng)AB=20米且AD=5米時(shí),可使得活動(dòng)中心的截面面積最大. 法二:欲使活動(dòng)中心截面面積盡可能大,則影長(zhǎng)EG恰為2.5米,則此時(shí)點(diǎn)G為(30,2.5), 設(shè)過(guò)點(diǎn)G的上述太陽(yáng)光線(xiàn)為l1,則l1所在直線(xiàn)方程為y-=-(x-30), 即3x+4y-100=0. 由直線(xiàn)l1與半圓H相切,得 r=. 而點(diǎn)H(r,h)在直線(xiàn)l1的下方,則3r+4h-100<0, 即r=-,從而h=25-2r. 又S=2rh+πr2=2r(25-2r)+×r2=-r2+50r=-(r-10)2+250≤250. 當(dāng)且僅當(dāng)r=10時(shí)取等號(hào). 所以當(dāng)AB=20米且AD=5米時(shí),可使得活動(dòng)中心的截面面積最大. [點(diǎn)評(píng)] 解與動(dòng)點(diǎn)軌跡為背景的實(shí)際應(yīng)用問(wèn)題常需建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,將實(shí)際問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)直線(xiàn)與圓位置關(guān)系問(wèn)題,再結(jié)合解幾何方法求最值與范圍.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!